Ch 18 Cellular Manufacturing

Sections:
1. Part Families
2. Parts Classification and Coding
3. Production Flow Analysis
4. Cellular Manufacturing
5. Applications in Group Technology
6. Quantitative Analysis in Cellular Manufacturing
Group Technology (GT) Defined

“A manufacturing philosophy in which similar parts are identified and grouped together to take advantage of their similarities in design and production”

- Similarities among parts permit them to be classified into part families.
 - In each part family, processing steps are similar.
- The improvement is typically achieved by organizing the production facilities into manufacturing cells that specialize in production of certain part families.
Overview of Group Technology

- Parts in the medium production quantity range are usually made in batches.

- Disadvantages of batch production:
 - Downtime for changeovers
 - High inventory carrying costs

- GT minimizes these disadvantages by recognizing that although the parts are different, there are groups of parts that possess similarities.
Part Families and Cellular Manufacturing

- GT exploits the part similarities by utilizing similar processes and tooling to produce them.
- Machines are grouped into cells, each cell specializing in the production of a part family called cellular manufacturing.
- Cellular manufacturing can be implemented by manual or automated methods. When automated, the term flexible manufacturing system is often applied.
1. The plant currently uses traditional batch production and a process type layout
This results in much material handling effort, high in process inventory, and long manufacturing lead times

2. The parts can be grouped into part families
A necessary condition to apply group technology
Each machine cell is designed to produce a given part family, or a limited collection of part families, so it must be possible to group parts made in the plant into families
Problems in Implementing GT

1. **Identifying the part families**
 - Reviewing all of the parts made in the plant and grouping them into part families is a substantial task.

2. **Rearranging production machines into GT cells**
 - It is time-consuming and costly to physically rearrange the machines into cells, and the machines are not producing during the changeover.
Part Family

“A collection of parts that possess similarities in geometric shape and size, or in the processing steps used in their manufacture”

- Part families are a central feature of group technology. There are always differences among parts in a family.
- But the similarities are close enough that the parts can be grouped into the same family.
Part Families

- Two parts that are identical in shape and size but quite different in manufacturing:
 - (a) 1,000,000 units/yr, tolerance = ±0.010 inch, 1015 CR steel, nickel plate;
 - (b) 100/yr, tolerance = ±0.001 inch, 18-8 stainless steel
Part Families

- Ten parts are different in size, shape, and material, but quite similar in terms of manufacturing.
- All parts are machined from cylindrical stock by turning; some parts require drilling and/or milling.
Traditional Process Layout
Cellular Layout Based on GT

- Each cell specializes in producing one or a limited number of part families.
Ways to Identify Part Families

1. Visual inspection
 - Using best judgment to group parts into appropriate families, based on the parts or photos of the parts

2. Parts classification and coding
 - Identifying similarities and differences among parts and relating them by means of a coding scheme

3. Production flow analysis
 - Using information contained on route sheets to classify parts
Parts Classification and Coding

“Identification of similarities among parts and relating the similarities by means of a numerical coding system”

- Most time consuming of the three methods
- Must be customized for a given company or industry
- Reasons for using a coding scheme:
 - *Design retrieval*: access to a part that already exists
 - *Automated process planning*: process plans for similar code parts
 - *Machine cell design*: composite part concept
Features of Parts Classification and Coding Systems

- Most classification and coding systems are based on one of the following:
 - *Part design attributes*
 - *Part manufacturing attributes*
 - *Both design and manufacturing attributes*
Part Design Attributes

- Major dimensions
- Basic external shape
- Basic internal shape
- Length/diameter ratio
- Material type
- Part function
- Tolerances
- Surface finish
Part Manufacturing Attributes

- Major process
- Operation sequence
- Batch size
- Annual production
- Machine tools
- Cutting tools
- Material type
Coding Scheme Structures

1. **Hierarchical structure (monocode)**
 - Interpretation of each successive digit depends on the value of the preceding digit

2. **Chain-type structure (polycode)**
 - Interpretation of each symbol is always the same
 - No dependence on previous digits

3. **Mixed-code structure**
 - Combination of hierarchical and chain-type structures
Opitz Classification System

- One of the first published classification and coding schemes for mechanical parts
- Basic code = nine (9) digits
 - Digits 1 through 5 = form code – primary shape and design attributes (hierarchical structure)
 - Digits 6 through 9 = supplementary code – attributes that are useful in manufacturing (e.g., dimensions, starting material)
 - Digits 10 through 13 = secondary code – production operation type and sequence
Basic Structure of Opitz System

The diagram illustrates the basic structure of the Opitz System, which is used for classifying parts based on their dimensions, shape, and machining requirements. The system uses a code consisting of six digits to represent the part:

1. **Digit 1 (Part class):**
 - 0: L/D ≥ 0.5
 - 1: 0.5 < L/D < 3
 - 2: L/D = 3
 - 3: With deviation L/D ≥ 2
 - 4: With deviation L/D > 2
 - 5: Special
 - 6: A/E ≥ 3
 - 7: A/B ≥ 3
 - 8: A/E ≥ 3
 - 9: Special

2. **Digit 2 (Main shape):**
 - External shape element
 - Internal shape element

3. **Digit 3 (Rotational machining):**
 - Machining of plane surfaces

4. **Digit 4 (Plane surface machining):**
 - Other holes and teeth

5. **Digit 5 (Additional holes and forming):**
 - Other holes, teeth, and forming

6. **Supplementary code (Digits 6-9):**
 - Material
 - Original shape of raw materials
 - Accuracy
Opitz Form Code (Digits 1 through 5)

<table>
<thead>
<tr>
<th>Digit 1</th>
<th>Digit 2</th>
<th>Digit 3</th>
<th>Digit 4</th>
<th>Digit 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part class</td>
<td>External shape, internal shape elements</td>
<td>Internal shape, internal shape elements</td>
<td>Plane surface machining</td>
<td>Auxiliary holes and gear teeth</td>
</tr>
<tr>
<td>0</td>
<td>L/D 0.5</td>
<td>0</td>
<td>Smooth, no shape elements</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.5 < L/D < 3</td>
<td>1</td>
<td>No shape elements</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>L/D 3</td>
<td>2</td>
<td>Thread</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Stopped to one end or smooth</td>
<td>3</td>
<td>Functional groove</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Stopped to both ends</td>
<td>4</td>
<td>No shape elements</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>Thread</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>Functional groove</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>Operating thread</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>Operating thread</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>9</td>
<td>All others</td>
<td>9</td>
</tr>
</tbody>
</table>

©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. For the exclusive use of adopters of the book Automation, Production Systems, and Computer-Integrated Manufacturing, Third Edition, by Mikell P. Groover.
Example: Opitz Form Code

Form code in Opitz system is 15100
Production Flow Analysis (PFA)

“Method for identifying part families and associated machine groupings based on production route sheets rather than part design data”

- Workparts with identical or similar route sheets are classified into part families.
- Advantages of using route sheet data
 - Parts with different geometries may nevertheless require the same or similar processing
 - Parts with nearly the same geometries may nevertheless require different processing
Steps in Production Flow Analysis

1. Data collection – operation sequence and machine routing for each part (number)
2. Sortation of process routings – parts with same sequences and routings are arranged into “packs”
3. PFA chart – each pack is displayed on a PFA chart
 - Also called a part-machine incidence matrix
4. Cluster analysis – purpose is to collect packs with similar routings into groups
 - Each machine group = a machine cell
Cellular Manufacturing

“Application of group technology in which dissimilar machines or processes are aggregated into cells, each of which is dedicated to the production of a part family or limited group of families”

- Typical objectives of cellular manufacturing:
 - To shorten manufacturing lead times
 - To reduce WIP
 - To improve quality
 - To simplify production scheduling
 - To reduce setup times
Composite Part Concept

“A composite part for a given family is a hypothetical part that includes all of the design and manufacturing attributes of the family”

- In general, an individual part in the family will have some of the features of the family, but not all of them.
- A production cell for the part family would consist of those machines required to make the composite part.
- Such a cell would be able to produce any family member, by omitting operations corresponding to features not possessed by that part.
Composite Part Concept

Composite part concept: (a) the composite part for a family of machined rotational parts, and (b) the individual features of the composite part.
<table>
<thead>
<tr>
<th>Design feature</th>
<th>Corresponding operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. External cylinder</td>
<td>Turning</td>
</tr>
<tr>
<td>2. Face of cylinder</td>
<td>Facing</td>
</tr>
<tr>
<td>3. Cylindrical step</td>
<td>Turning</td>
</tr>
<tr>
<td>4. Smooth surface</td>
<td>External cylindrical grinding</td>
</tr>
<tr>
<td>5. Axial hole</td>
<td>Drilling</td>
</tr>
<tr>
<td>6. Counter bore</td>
<td>Counterboring</td>
</tr>
<tr>
<td>7. Internal threads</td>
<td>Tapping</td>
</tr>
</tbody>
</table>
Machine Cell Designs

1. Single machine
2. Multiple machines with manual handling
 - Often organized into U-shaped layout
3. Multiple machines with semi-integrated handling
4. Automated cell – automated processing and integrated handling
 - Flexible manufacturing cell
 - Flexible manufacturing system
Machine Cell with Manual Handling

U-shaped machine cell with manual part handling between machines
Cell with Semi-Integrated Handling

In-line layout using mechanized work handling between machines
Cell with Semi-Integrated Handling

Loop layout allows variations in part routing between machines
Cell with Semi-Integrated Handling

Rectangular layout also allows variations in part routing and allows for return of work carriers if they are used.
Four Types of Part Moves in Mixed Model Production System

1. Repeat operation
2. In-sequence move
3. By-passing move
4. Backtracking move
Key Machine Concept

- “Applies in cells when there is one machine (the key machine) that is more expensive or performs certain critical operations”
 - Other machines in the cell are supporting machines
 - Important to maintain high utilization of key machine, even if this means lower utilization of supporting machines
Manufacturing Applications of Group Technology

- Different ways of forming machine cells:
 - Informal scheduling and routing of similar parts through selected machines to minimize setups
 - Virtual machine cells – dedication of certain machines in the factory to produce part families, but no physical relocation of machines
 - Formal machine cells – machines are physically relocated to form the cells
- Automated process planning
- Modular fixtures
- Parametric programming in NC
Benefits of Group Technology in Manufacturing

- Standardization of tooling, fixtures, and setups is encouraged
- Material handling is reduced
 - Parts are moved within a machine cell rather than the entire factory
- Process planning and production scheduling are simplified
- Work-in-process and manufacturing lead time are reduced
- Improved worker satisfaction in a GT cell
- Higher quality work
Product Design Applications of Group Technology

- Design retrieval systems
 - Industry survey: For new part designs,
 - Existing part design could be used - 20%
 - Existing part design with modifications – 40%
 - New part design required – 40%
 - Simplification and standardization of design parameters such as tolerances, chamfers, hole sizes, thread sizes, etc.
 - Reduces tooling and fastener requirements in manufacturing
Quantitative Analysis in Cellular Manufacturing

1. Grouping parts and machines by Rank Order Clustering
2. Arranging machines in a GT Cell