Constraint Programming

Lecture 7:
Exploiting Properties of Constraints
Last Lecture

• **MAC**
 - Combines search and enforcing global arc consistency.
 - **Incremental**: Smart about which arcs are added to the queue following an assignment.

• **AC6**
 - **Fine**-grained (smart about individual domain elements).
 - Lazy: Find **first** support for each domain element.

• **AC3.1/2001**
 - **Coarse**-grained (smart about which arcs to revise).
 - Smart about arc revision.
 - Same time/space complexity as AC6.
This Lecture

• Smarter Global Arc Consistency:
 • Reducing constraint checks.
 • Support inference, not support checking.
Exploiting Properties of Constraints

Functional Constraints
Functional Constraints

- Example: $x_1 = x_2$. $D_1, D_2 = \{1, 2, 3\}$.
- How many values in D_2 support $x_1 = 1$?
- How many values *could* support $x_1 = 1$ given this constraint?
Functional Constraints

- Example: $x_1 = x_2$. $D_1, D_2 = \{1, 2, 3\}$.
- How many values in D_2 support $x_1 = 1$? 1
- How many values *could* support $x_1 = 1$ given this constraint?
Functional Constraints

- Example: $x_1 = x_2$. $D_1, D_2 = \{1, 2, 3\}$.
- How many values in D_2 support $x_1 = 1$? 1
- How many values could support $x_1 = 1$ given this constraint? 1
Functional Constraints

- Constraint $c(x_i, x_j)$ is functional wrt D_i:
 - For all d_i in D_i there exists at most one d_j in D_j such that $c(x_i = d_i, x_j = d_j)$ is satisfied.

- Examples:
 - $x = y$,
 - $x = y + c$.
 - $x = y - c$.
 - $x = y \times c$.
 - Division? Careful if it’s integer division.
Functional Constraints

• Constraint \(c(x_i, x_j) \) is functional wrt \(D_i \):
 • Forall \(d_i \) in \(D_i \) there exists at most one \(d_j \) in \(D_j \) such that \(c(x_i = d_i, x_j = d_j) \) is satisfied.

• What about \(x = y^2 \)?
 • When is this functional wrt \(D_x \)?
 • When is it not?
Functional Constraints

- Constraint $c(x_i, x_j)$ is **functional** wrt D_i:
 - For all d_i in D_i there exists at most one d_j in D_j such that $c(x_i = d_i, x_j = d_j)$ is satisfied.

- What about $x = y^2$?
 - When is this functional wrt D_x?
 - When $y \geq 0$, or $y \leq 0$
 - When is it not?
 - If D_y encompasses both +ve and –ve integers that are the roots of values in D_x.

- Illustrates that this property depends on the **domains**.
Revising Functional Constraints

• Ordinary arc revision for arc(x_i, x_j):
 • For each element of D_i, check each element of D_j in turn until a support is found.
 • Given a functional constraint?
Revising Functional Constraints

• Ordinary arc revision for $\text{arc}(x_i, x_j)$:
 • For each element of D_i, check each element of D_j in turn until a support is found.
 • Given a functional constraint, use the function to see if the one possible supporting value is there or not.
 • **One** check.
Exploiting Properties of Constraints

Monotonic Constraints
Monotonic Constraints

• Example: $x_1 < x_2$. $D_1, D_2 = \{1, 2, 3\}$.

• Let’s say we are looking for support for $x_1 = 1$.

• What one check can we make, and why?
Monotonic Constraints

- Example: $x_1 < x_2$. $D_1, D_2 = \{1, 2, 3\}$.
- Let’s say we are looking for support for $x_1 = 1$.
- What one check can we make, and why?
 - Is the largest element in D_2 greater than 1?
 - Because if the largest element doesn’t support 1 then none of its elements can.
Monotonic Constraints

• Constraint \(c(x_i, x_j) \) is **monotonic** wrt domains \(D_i, D_j \):
 • For any \(d_i \) in \(D_i \), \(d_j \) in \(D_j \), if \(c(x_i = d_i, x_j = d_j) \) then \(c(x_i = d_i', x_j = d_j') \) for all:
 • \(d_i' \leq d_i \) in \(D_i \) and \(d_j' \geq d_j \) in \(D_j \)
 • I.e. If we decrease \(d_i \) and/or increase \(d_j \), constraint remains satisfied.

• Examples:
 • \(x_1 < x_2. \, D_1, D_2 = \{1, 2, 3\} \).
 • Orderings on vectors of variables, as we will see.
Revising Monotonic Constraints

• Ordinary arc revision for arc(x_i, x_j):
 • For each element of D_i, check each element of D_j in turn until a support is found.
 • Given a monotonic constraint?
Revising Monotonic Constraints

• Ordinary arc revision for arc(x_i, x_j):
 • For each element of D_i, check each element of D_j in turn until a support is found.
 • Given a monotonic constraint, check against the maximum value of D_j. If that doesn’t support it, nothing in D_j will (and vice versa).
 • One check.
AC5 - Historical Note

• A “generic” arc consistency algorithm.
 • Can be instantiated to AC3 or AC4.
 • Can also be specialised to sub-classes of CSP.
 • As originally presented, this was functional and monotonic constraints.
Exploiting Properties of Constraints

Support Inference
The Story So Far

• We’ve seen two cases where support (or the lack of it) can be established with a **single** constraint check.

• Now we’re going to see how to **infer** support rather than check for it.
 • Assumption: inferences made are **cheaper** than constraint checks.
Support Inference Example

• \(x_1 \neq x_2 \). \(D_1, D_2 = \{1, 2, 3\} \).

\[D_1 \begin{array}{c}
1 \\
2 \\
3
\end{array} \]

\[D_2 \begin{array}{c}
1 \\
2 \\
3
\end{array} \]

• This example adapted from Bessiere et al “Using Inference to Reduce Arc Consistency Computation”, *IJCAI* 1995.
• Perform the AC6 initialisation step on this example, count the number of constraint checks made.
Support Inference Example: AC6 Initialise

- Look in D_2 for first support for 1 in D_1: 2

- Constraint checks so far: 2
Support Inference Example: AC6 Initialise

- Look in D_2 for first support for 2 in D_1: 1

- Constraint checks so far: 3
Support Inference Example: AC6 Initialise

- Look in D_2 for first support for 3 in D_1: 1

- Constraint checks so far: 4
Support Inference Example: AC6 Initialise

- Similarly:

\[\begin{align*}
 D_1 & \quad 1 & \quad 2 & \quad 3 \\
 1 & \quad \quad & \quad 2 & \quad \quad & \quad 3 \\
 D_2 & \quad 1 & \quad 2 & \quad 3
\end{align*} \]

- Constraint checks total: 8
Bi-directionality: Recap

• d_i in D_i is supported by d_j in D_j if and only if d_j in D_j is supported by d_i in D_i.
• Example: $x_1 = x_2$: D_1, $D_2 = \{1, 2, 3\}$.
 • 1 in D_1 supports 1 in D_2.
 • 1 in D_2 supports 1 in D_1.
• We do not need to know anything about the semantics of the constraints to use this property.
Support Inference Example: Bi-directionality

• Perform the AC6 initialisation step on this example, using bi-directionality inference. Count the number of constraint checks made.

\[D_1 \quad 1 \quad 2 \quad 3 \]

\[D_2 \quad 1 \quad 2 \quad 3 \]
Support Inference Example: Bi-directionality

• Look in D_2 for first support for 1 in D_1.
 • 1 in D_2 does not support 1 in D_1.
 • So: 1 in D_1 does not support 1 in D_2.

D_1 1 2 3

D_2 1 2 3

• Constraint checks so far: 1
Support Inference Example: Bi-directionality

- Look in D_2 for first support for 1 in D_1.
 - 2 in D_2 supports 1 in D_1.
 - So: 1 in D_1 supports 2 in D_2.

- Constraint checks so far: 2
Support Inference Example: Bi-directionality

- Look in D_2 for first support for 2 in D_1.
 - 1 in D_2 supports 2 in D_1.
 - So: 2 in D_1 supports 1 in D_2.

- Constraint checks so far: 3
Support Inference Example: Bi-directionality

- Look in D_2 for first support for 3 in D_1.
 - 1 in D_2 supports 3 in D_1.
 - So: 3 in D_1 supports 1 in D_2.

- Constraint checks so far: 4
Support Inference Example: Bi-directionality

- Look in D_1 for first support for 3 in D_2.
 - 1 in D_1 supports 3 in D_2.
 - So: 3 in D_2 supports 1 in D_1

- Constraint checks total: 5
Historical Note: AC-inference Schema

• General schema for enforcing global arc consistency with support inference.
• Instantiate with particular types of inference.
• AC7: bi-directionality.
 • So AC7 is still general.
Support Inference Example: Commutativity

- \(c(x_i = d, x_j = d') \) is satisfied if and only if \(c(x_i = d', x_j = d) \) is satisfied.
- E.g. 1 \(\neq \) 2 and 2 \(\neq \) 1 both satisfy the constraint.
- Given a constraint with this property, support can be inferred efficiently.
Support Inference Example: Commutativity

- Perform the AC6 initialisation step on this example, using bi-directionality inference. Count the number of constraint checks made.

\[D_1 \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} \]

\[D_2 \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} \]
Support Inference Example: Commutativity

- Look in D_2 for first support for 1 in D_1.
 - 1 in D_2 does not support 1 in D_1.
 - So: 1 in D_1 does not support 1 in D_2 (bi-directionality/commutativity).

D_1 1 2 3

D_2 1 2 3

- Constraint checks so far: 1
Support Inference Example: Commutativity

• Look in D_2 for first support for 1 in D_1.
 • 2 in D_2 supports 1 in D_1.
 • So: 1 in D_1 supports 2 in D_2 (bi-directionality).

• Constraint checks so far: 2
Support Inference Example: Commutativity

- Look in D_2 for first support for 1 in D_1.
 - 2 in D_2 supports 1 in D_1.
 - So: 1 in D_1 supports 2 in D_2 (bi-directionality).
 - Since we know 1,2 is supported, so is 2,1 (commutativity).

- Constraint checks so far: 2
Support Inference Example: Commutativity

- Look in D_2 for first support for 3 in D_1.
 - 1 in D_2 supports 3 in D_1.
 - So: 3 in D_1 supports 1 in D_2 (bi-directionality).

- Constraint checks so far: 3
Support Inference Example: Commutativity

- Look in D_2 for first support for 3 in D_1.
 - 1 in D_2 supports 3 in D_1.
 - So: 3 in D_1 supports 1 in D_2 (bi-directionality).
 - Since we know 3,1 is supported, so is 1,3 (commutativity).

- Constraint checks so far: 3
Support Inference Example: Irreflexivity

- \(c(x_i = d, x_j = d) \) is not satisfied.
- E.g. \(x_i \neq x_j, x_i < x_j \)
Support Inference Example: Irreflexivity

- Use bi-directionality and irreflexivity, to establish support in this network.
- $x_1 \neq x_2$. $D_1, D_2 = \{1, 2, 3\}$.

\[
D_1 \begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]

\[
D_2 \begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]
Support Inference Example: Irreflexivity

- Use bi-directionality and irreflexivity, to establish support in this network.
- \(x_1 \neq x_2. \ D_1, D_2 = \{1, 2, 3\} \).

\[
\begin{array}{ccc}
D_1 & & D_2 \\
1 & \rightarrow & 1 \\
\downarrow & & \downarrow \\
2 & \rightarrow & 2 \\
\downarrow & & \downarrow \\
3 & \rightarrow & 3
\end{array}
\]
- Infer \(c(x_1 = 1, x_2 = 1) \) is not satisfied. Similarly for \(c(x_1 = 2, x_2 = 2) \), \(c(x_1 = 3, x_2 = 3) \)
Support Inference Example: Irreflexivity

- Use bi-directionality and irreflexivity, to establish support in this network.
- $x_1 \neq x_2. \ D_1, D_2 = \{1, 2, 3\}.$

2 in D_2 supports 1 in D_1, so 1 in D_1 supports 2 in D_2.
Support Inference Example: Irreflexivity

- Use bi-directionality and irreflexivity, to establish support in this network.
- \(x_1 \neq x_2 \). \(D_1, D_2 = \{1, 2, 3\} \).

\[
\begin{array}{c}
\text{\(D_1 \)} \\
1 \rightarrow 2 \\
1 \leftarrow 2 \\
1 \leftarrow 3 \\
3 \rightarrow 1 \\
3 \rightarrow 2
\end{array}
\]

- 1 in \(D_2 \) supports 2 in \(D_1 \), so 2 in \(D_1 \) supports 1 in \(D_2 \).
Support Inference Example: Irreflexivity

- Use bi-directionality and irreflexivity, to establish support in this network.
- $x_1 \neq x_2$. $D_1, D_2 = \{1, 2, 3\}$.

- 1 in D_2 supports 3 in D_1, so 3 in D_1 supports 1 in D_2.
Support Inference Example: Irreflexivity

- Use bi-directionality and irreflexivity, to establish support in this network.
- \(x_1 \neq x_2 \). \(D_1, D_2 = \{1, 2, 3\} \).

- 1 in \(D_1 \) supports 3 in \(D_2 \), so 3 in \(D_2 \) supports 1 in \(D_1 \)
- Constraint checks total: 4
Support Inference Example: Irreflexivity & Commutativity

- Use bi-directionality, commutativity and irreflexivity, to establish support in this network.
- $x_1 \neq x_2$. $D_1, D_2 = \{1, 2, 3\}$.

\[D_1 \begin{array}{ccc} 1 & 2 & 3 \end{array} \]

\[D_2 \begin{array}{ccc} 1 & 2 & 3 \end{array} \]
Support Inference Example: Irreflexivity & Commutativity

- Use bi-directionality, commutativity and irreflexivity, to establish support in this network.
- \(x_1 \neq x_2 \). \(D_1, D_2 = \{1, 2, 3\} \).

\[
\begin{array}{ccc}
 D_1 & 1 & 2 & 3 \\
 D_2 & 1 & 2 & 3 \\
\end{array}
\]

- Infer \(c(x_1 = 1, x_2 = 1) \) is not satisfied (irreflexivity). Similarly for \(c(x_1 = 2, x_2 = 2) \) and \(c(x_1 = 3, x_2 = 3) \).
Support Inference Example: Irreflexivity & Commutativity

- Use bi-directionality, commutativity and irreflexivity, to establish support in this network.
- $x_1 \neq x_2$. $D_1, D_2 = \{1, 2, 3\}$.

- 2 in D_2 supports 1 in D_1, so 1 in D_1 supports 2 in D_2 (bi-directionality).
Support Inference Example: Irreflexivity & Commutativity

• Use bi-directionality, commutativity and irreflexivity, to establish support in this network.
• \(x_1 \neq x_2. \ D_1, D_2 = \{1, 2, 3\} \).

\[
\begin{align*}
D_1 & \quad 1 \quad 2 \quad 3 \\
D_2 & \quad 1 \quad 2 \quad 3
\end{align*}
\]

• Since we know 1,2 is supported, so is 2,1 (commutativity).
Support Inference Example: Irreflexivity & Commutativity

- Use bi-directionality, commutativity and irreflexivity, to establish support in this network.
- $x_1 \neq x_2$. $D_1, D_2 = \{1, 2, 3\}$.

\[\begin{align*}
D_1 & \quad 1 \quad 2 \quad 3 \\
D_2 & \quad 1 \quad 2 \quad 3 \\
\end{align*} \]

- 1 in D_2 supports 3 in D_1, so: 3 in D_1 supports 1 in D_2 (bi-directionality).
Support Inference Example: Irreflexivity & Commutativity

• Use bi-directionality, commutativity and irreflexivity, to establish support in this network.
• \(x_1 \neq x_2. \ D_1, D_2 = \{1, 2, 3\}. \)

\[
\begin{array}{c}
D_1 \\
1 \\
2 \\
3 \\
\end{array}
\quad
\begin{array}{c}
D_2 \\
1 \\
2 \\
3 \\
\end{array}
\]

• Since we know 3,1 is supported, so is 1,3 (commutativity).
• Total constraint checks: 2
Support Inference Example: Disequality

• As well as irreflexive, disequality is anti-functional:
 • Given \(x_1 \neq x_2 \) and \(d \) in \(D_1 \), there is only one domain element in \(D_2 \) that, when assigned to \(x_2 \), violates the constraint.

• How can we exploit this fact to reduce checks for \(x_1 \neq x_2 \)?
Support Inference Example: Disequality

- As well as irreflexive, disequality is **anti-functional**:
 - Given \(x_1 \neq x_2 \) and \(d \) in \(D_1 \), there is only one domain element in \(D_2 \) that, when assigned to \(x_2 \), violates the constraint.

- How can we exploit this fact to reduce checks for \(x_1 \neq x_2 \)?
 - If \(|D_2| > 1 \), there is support for every element of \(D_1 \) (and vice versa). **0 checks**.
Support Inference Example: Monotonicity

- We saw earlier how to reduce constraint checks by exploiting monotonicity.
- \(x_1 \leq x_2 \). \(D_1, D_2 = \{1, 2, 3\} \).
 - For each element of \(D_1 \), just check maximum element in \(D_2 \).
 - Let’s say we check \(x_1 = 3 \) and found support via \(x_2 = 3 \). What now can we infer?
Support Inference Example: Monotonicity

• We saw earlier how to reduce constraint checks by exploiting monotonicity.

• $x_1 \leq x_2$. $D_1, D_2 = \{1, 2, 3\}$.
 • For each element of D_1, just check maximum element in D_2.
 • Let’s say we check $x_1 = 3$ and found support via $x_2 = 3$. What now can we infer?
 • Support for 3 in D_2 (bi-directionality).
 • Support for 1, 2 in D_1 (monotonicity).
Relevance

• Exploiting properties of constraints is very common in today’s constraint solvers.
• This is because of the prevalence of specialised intensional propagators for individual non-binary constraints.
 • These propagators focus on one constraint type.
 • So they can exploit the properties of that constraint.
 • Eg: all-different, summation, various orderings…
• We will see detailed examples later.
Lecture 7: Summary

• Reducing constraint checks by using properties of constraints:
 • Functional constraints.
 • Monotonic constraints.

• Avoiding constraint checks by using inference:
 • Bi-directionality.
 • Commutativity.
 • Irreflexivity.
 • Anti-functional.
 • Monotonicity.