Constraint Programming

Constraint Modelling – Thinking Abstractly
The Return of Modelling
A constraint model maps the features of a combinatorial problem onto the features of a constraint satisfaction problem (CSP).
Model a problem for a particular constraint solver

1. Ill-defined problem statement
2. Well-defined problem statement
3. Solver-independent Constraint Model
4. Solver-specific Constraint Model

- We usually consider constraint modelling to be mapping 2 to 3.
An Extra Step

1. Ill-defined problem statement
2. Well-defined problem statement
3. Solver-independent Constraint Model
4. Solver-specific Constraint Model

When viewed **abstractly**, many combinatorial problems that we wish to tackle with constraint solving exhibit **common features**.

Abstractly: **above** level at which constraint modelling decisions made.⁵
An Extra Step

1. Ill-defined problem statement

2. Well-defined problem statement

3. Solver-independent Constraint Model

4. Solver-specific Constraint Model

• E.g Many problems require us to find objects such as:
 • (Multi-)sets
 • Relations
 • Functions

• These are patterns in the problems we want to solve.

• We can write our abstract constraint model in terms of these patterns. But…
An Extra Step

1. Ill-defined problem statement

2. Well-defined problem statement

3. Solver-independent Constraint Model

4. Solver-specific Constraint Model

- E.g. Many problems require us to find objects such as:
 - (Multi-)sets
 - Relations
 - Functions
- Typically, not supported directly by constraint solvers.
- So need to model them as constrained collections of more primitive objects.
An Extra Step

1. Ill-defined problem statement
2. Well-defined problem statement
A. Abstract Constraint Model
3. Solver-independent Constraint Model
4. Solver-specific Constraint Model

- E.g Many problems require us to find objects such as:
 - (Multi-)sets
 - Relations
 - Functions
- Develop corresponding **modelling patterns** for representing and constraining these combinatorial objects.
- We can **reduce effort** required when modelling a new problem.
We will use the same skeleton as CSPs:

- **Given** parameters
- **Find decision** variables
- **Such that** constraints

Much richer set of types of decision variable:

- Sequence, set, multiset, …
- Constraints & objective function use usual operators on these types of objects:
 - Set union, membership of a set or relation, function application.
Patterns in Abstract Constraint Models

- We will look at a number of individual patterns.
- We will then look at how these patterns can be combined to model more complex problems.
Sequences
A sequence is an ordered list of elements. In the sense that a sequence has a first element, a second element, etc. Repetition is allowed.

Examples:
- 0, 1, 1, 2, 3, 5, 8, 13.
- Turn right, drive $\frac{1}{4}$ mile, turn right, drive $\frac{1}{2}$ mile, turn left.
Where does the Sequence Pattern Occur?

- Planning Problems:
 - Find a **sequence of actions** to transform an initial state into a goal state.
 - Example: Peg Solitaire (CSPLib 38).

![Sequence Pattern Diagram](www.csplib.org)
Where does the Sequence Pattern Occur?

• Communications:
 • Low Autocorrelation Binary Sequences (CSPLib 5).

• Mathematics:
 • Langford’s Problem (CSPLib 24).
 • Error-Correcting Codes (CSPLib 36).

• Puzzles:
 • Magic Sequences (CSPLib 19).
Fixed-length Sequences

- Problems of the form:
 - Given n,
 - Find a sequence of objects of length n,
 - Such that …
Fixed-length Sequences

• Example (Magic Sequence, CSPLib 19):
 • Given \(n \).
 • Find a sequence \(S \) of integers \(s_0, \ldots, s_n \).
 • Such that there are \(s_i \) occurrences of \(i \) in \(S \) for each \(i \) in 0, \ldots, \(n \).
 • If \(n = 9 \), a solution is:
 • 6, 2, 1, 0, 0, 0, 1, 0, 0, 0
Fixed-length Sequences

- Problems of the form:
 - Given n,
 - Find a sequence of objects of length n, such that …

- Most straightforward model: use an array of decision variables indexed 1..n. Domains are the objects to be found.

- Example, find a sequence of n digits:

```
DigitsArray 1 2 3 4 n
 0..9 0..9 0..9 0..9 ...
```
Fixed-length Sequences

Example: Magic Sequence

- **Given** \(n \), a non-negative integer
- **Find** a sequence \(S \) of integers \(s_0, \ldots, s_n \) each of which is between 0 and \(n \)
- **Such that** there are \(s_i \) occurrences of \(i \) in \(S \) for each \(i \) in \(0, \ldots, n \).

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & \ldots & n \\
\hline
s': & 0..n & 0..n & 0..n & 0..n & \ldots & 0..n
\end{array}
\]

Constraints:
For all \(i \) in 0..\(n \).
No. of occurrences of \(i \) in \(S' \) is \(S'[i] \)
Bounded-length Sequences

- Problems of the form:
 - Given n,
 - Find a sequence of objects of length at most n,
 - Such that …
Kiselman Semigroup Problem (KSP)

• Given \(n \), a positive integer.
 Find a sequence of integers drawn from \(1..n \)
 Such that between every pair of occurrences of an
 integer \(i \) there exists an integer greater than \(i \) and an
 integer less than \(i \).

• If \(n = 3 \), a solution is 2, 3, 1, 2

• We are usually interested in counting the solutions
 for a given \(n \).

• This is not a finite domain specification: there are an
 infinite number of finite sequences
Problem: Infinite Domains

- The KSP as stated is not finite.
 - Find a sequence of integers drawn from 1..n
 - The domain of this “sequence” variable is infinitely large.

- Why is this a problem?
 - Because we want to map our abstract constraint specification down to a finite-domain CSP.
 - With infinite domains in the abstract specification, this will not be possible.
Derive Finite Domain for KSP

Given \(n \), a positive integer
Find a sequence of integers drawn from 1..\(n \)
Such that between every pair of occurrences of an integer \(i \)
 there exists an integer greater than \(i \) and an integer less than \(i \).

• Notice:
 There can be at most 1 occurrence of 1 and \(n \).
 There can be at most 2 occurrences of 2 and \(n-1 \).
 There can be at most 4 occurrences of 3 and \(n-2 \).

• So, given \(n \), we can derive a maximum sequence length:
• For even \(n \): \(1+2+4+8+\ldots+2^{n/2-1} = 2^{n/2+1}-2 \)
• Similarly for odd \(n \).
• Hence, domain of the sequence variable is finite.
Bounded-length Sequences

Given \(n \) a positive integer
Find a sequence of at most \(2^{n/2+1}-2 \) integers drawn from \(1..n \)
Such that between every pair of occurrences of an integer \(i \)
there exists an integer greater than \(i \) and an integer less than \(i \).

Again, we can use an array indexed \(1.. 2^{n/2+1}-2 \):

\[
S': \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\vdots & \ddots & \ddots & \ddots \\
\end{array}
\]

Problem: What if a solution has length less than \(2^{n/2+1}-2 \)?
Example: The empty sequence is always a solution to this problem.
Bounded-length Sequences

Given \(n \) a positive integer
Find a sequence of at most \(2^{n/2+1}-2 \) integers drawn from \(1..n \)
Such that between every pair of occurrences of an integer \(i \)
there exists an integer greater than \(i \) and an integer less than \(i \).

Problem: What if a solution has length less than \(2^{n/2+1}-2 \)?

Solution: Use a dummy value in the domain. In this case we use 0:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & 2^{n/2+1}-2 \\
S': & 0..n & 0..n & 0..n & 0..n & \cdots & 0..n
\end{array}
\]
Bounded-length Sequences

Given \(n \) a positive integer

Find a sequence of at most \(2^{n/2+1}-2 \) integers drawn from \(1..n \)

Such that between every pair of occurrences of an integer \(i \)
there exists an integer greater than \(i \) and an integer less than \(i \).

Constraint:

For all \(i \) in \(1..2^{n/2+1}-2 \). For all \(j \) in \(i+1..2^{n/2+1}-2 \).

\(S'[i] = S'[j] \neq 0 \rightarrow \)

exists \(ls, gt \) in \(i+1..j-1 \).

\((S'[ls] \neq 0 \land S'[ls] < S'[i]) \land S'[gt] > S'[i]) \)
Bounded-length Sequences

- So, for $n = 4$ and the solution 1, 2 the variables might be assigned:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

Problem: They might also be assigned

| 1 | 0 | 0 | 2 | 0 | 0 |

Adding the dummy value has created **equivalence classes** of assignments.
Bounded-length Sequences

• Adding the dummy value has created equivalence classes of assignments.
• Solution: choose a canonical element from each class.
• E.g. all 0s must appear at the end of the sequence:
 • For all \(i \) in \(1..2^{n/2+1}-3 \) . \((S'[i] = 0) \rightarrow (S'[i + 1] = 0)\)
• This constraint rejects all other equivalents.
Something to Note

• It is **very common** when modelling an abstract object to **introduce equivalences** during modelling.

• Need to be aware of this happening, and of the measure used to counter it.
Unbounded Sequences: Dealing with Infinite Domains

• For the Kiselman problem, we were able to bound the sequence length (relatively) straightforwardly.

• For some problems either:
 • We cannot derive a bound.
 • Any bound we can derive is so weak as to be useless.
Unbounded Sequences: Dealing with Infinite Domains

• This is an example of a situation where we have to deal with an infinite domain.
• This is often the case when modelling planning problems.
 • Difficult to tell how many actions are going to be needed to achieve the goal state.
Unbounded Sequences

- Solution: solve a series of CSPs, incrementally increasing the length of the sequence.
- i.e. Try and find a solution for a sequence of length 1.
 - If no solution, try length 2.
 - If no solution, try length 3 …
- This way we find a solution with the shortest sequence.
Permutations

• Some problems involve finding a sequence of elements where:
 • The elements in the sequence are known
 • Their arrangement is not.
• I.e. find a permutation of the sequence.
Permutations

Example: The Travelling Salesman Problem

• Given a network of cities, known distances between every pair of cities, and a starting city.
• Find shortest route that visits all points, returns to start.

Image from www.jimloy.com
Permutations

Example: The Car Sequencing Problem (CSPLib 1)
- Given a set of cars that must be manufactured
- Find an order in which they should go down the conveyor belt such that...

Figure from Foundations of Constraint Satisfaction [Tsang, 1993]
Permutations: First Viewpoint

- Assume that the elements of the permutation are distinct.
- First viewpoint is as fixed-length. If permutation contains elements a, ..., f:

<table>
<thead>
<tr>
<th>Perm1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
</tr>
</tbody>
</table>

Constraint: All-different(Perm1)
Permutations: Second Viewpoint

• Alternatively, we know the elements that appear in the sequence.

• So we can index by those elements:

 \[
 \begin{array}{ccccccc}
 \text{Perm2} & a & b & c & d & e & f \\
 \hline
 1..6 & 1..6 & 1..6 & 1..6 & 1..6 & 1..6 \\
 \end{array}
 \]

 Constraint: All-different(Perm2)

• Domain values represent the position in the sequence an element is in. So “badcef” would be:

 \[
 \begin{array}{ccccccc}
 \text{Perm2} & a & b & c & d & e & f \\
 \hline
 2 & 1 & 4 & 3 & 5 & 6 \\
 \end{array}
 \]
Permutations: Which Viewpoint to Use?

- Depends on the constraints on the permutation.
- Example:: a and b must be adjacent.

<table>
<thead>
<tr>
<th>Perm1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
</tr>
</tbody>
</table>

For all i in 2..5. Perm1[i] = a →

(Perm1[i-1] = b ∨ Perm1[i+1] = b)

repeat with a and b swapped
Permutations: Which Viewpoint to Choose?

- Depends on the constraints on the permutation.
- Example: a and b must be adjacent.

<table>
<thead>
<tr>
<th>Perm2</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
</tr>
</tbody>
</table>

\[| \text{Perm2}[a] - \text{Perm2}[b] | = 1\]
Permutations: Which Viewpoint to Choose?

- Depends on the constraints on the permutation.
- Example: The first three letters of the sequence must form an English word.

<table>
<thead>
<tr>
<th>Perm1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
<td>a..f</td>
</tr>
</tbody>
</table>

Just need a table constraint on the first three variables in Perm1 that allows “bad”, “cad”, “fad”, …
Permutations: Which Viewpoint to Choose?

• Depends on the constraints on the permutation.

• Example: The first three letters of the sequence must form an English word.

<table>
<thead>
<tr>
<th>Perm2</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
<td>1..6</td>
</tr>
</tbody>
</table>

Horrible: (Perm2[a] = 1 and Perm2[c] = 2 and Perm2[e] = 3) or …
Sequences: Summary

• Fixed-length.
• Bounded-length.
• Unbounded.
• Permutations.
• Try some of the problems from CSPLib!