Computability Theory

Turing Machines
TMs

- We introduce the most powerful of the automata we will study: Turing Machines (TMs)

- TMs can compute any function normally considered computable

- Indeed we can define computable to mean computable by a TM
A Turing machine (TM) can compute everything a usual computer program can compute
- may be less efficient

But the computation allows a mathematical analysis of questions like:
- What is computable?
- What is decidable?
- What is complexity?
A Turing Machine is a theoretical computer consisting of a tape of infinite length and a read-write head which can move left and right across the tape.
Informal definition

- TMs uses an infinite memory (tape)
- Tape initially contains the input string followed by blanks
- When started, a TM executes a series of discrete transitions, as determined by its transition function and by the initial characters on the tape
Informal definition

- For each transition, the machine checks
 - what state it is in and what character is written on the tape below the head.
 - Based on those, it then changes to a new state, writes a new character on the tape, and moves the head one space left or right.

- The machine stops after transferring to the special **HALT** (accept or reject) state.

- If TM doesn’t enter a HALT state, it will go on forever
Differences between FA and TMs

- A TM can both write on the tape and read from it
- The read-write head can move both to the left and to the right
- The tape is infinite
- The special states of rejecting and accepting take immediate effect
 - No need to wait for the end of the string
Examples

a → a, R

b → a, R

a → a, R means TM reads the symbol a, it replaces it with a and moves head to right.

When reading an a, this TM will move right one square and stay in the same start state. When it scans a b, it will change this symbol to an a and go into the other state (accept state).
Examples

- A TM that tests for memberships in the language
 - $A = \{w#w \mid w \text{ belongs to } \{0,1\}^*\}$
- Idea:
 - Zig-zag across tape, crossing off matching symbols
Examples

- Tape head starts over leftmost symbol
- Record symbol in control and overwrite X
- Scan right: reject if blank encountered before #
- When # encountered, move right one space
- If symbols don’t match, reject
Examples

- Overwrite X
- Scan left, past # to X
- Move one space right
- Record symbol and overwrite X
- After # encountered, skip all Xs right of #
- If symbols don’t match, reject
- …
Examples

- Finally scan left past #
- If a or b encountered, reject
- When blank encountered, accept
Examples

- http://ironphoenix.org/tril/tm/
Formal Definition

- A Turing Machine is a 7-tuple \((Q, \Sigma, T, \xi, q_0, q_{\text{accept}}, q_{\text{reject}})\), where
 - \(Q\) is a finite set of states
 - \(\Sigma\) is a finite set of symbols called the alphabet
 - \(T\) is tape alphabet, where \(_\) belongs to \(T\), and \(\Sigma \subseteq T\)
 - \(\xi : Q \times T \rightarrow Q \times T \times \{L,R\}\) is the transition function
 - \(q_0 \in Q\) is the start state
 - \(q_{\text{accept}} \subseteq Q\) is the accept state
 - \(q_{\text{reject}} \subseteq Q\) is the reject state, where \(q_{\text{accept}} \neq q_{\text{reject}}\)
The transition function

\[\xi : Q \times T \rightarrow Q \times T \times \{L,R\} \] is the transition function
\[\xi(q,a) = (r,b,L) \]
means

in state \(q \) where head reads tape symbol \(a \)

the machine overwrites \(a \) with \(b \)

enters state \(r \)

move the head left
Workings of a TM

- $M = (Q, \Sigma, T, \xi, q_0, q_{\text{accept}}, q_{\text{reject}})$ computes as follows

 - Input $w=w_1w_2\ldots w_n$ is on leftmost n tape squares
 - Rest of tape is blank –
 - Head is on leftmost square of tape
Workings of a TM

- \(M = (Q, \Sigma, T, \xi, q_0, q_{\text{accept}}, q_{\text{reject}}) \)
- When computation starts
 - M Proceeds according to transition function \(\xi \)
 - If M tries to move head beyond left-hand-end of tape, it doesn’t move
 - Computation continues until \(q_{\text{accept}} \) or \(q_{\text{reject}} \) is reached
- Otherwise M runs forever
Configurations

- Computation changes
 - Current state
 - Current head position
 - Tape contents
Configurations

- Configuration
 - 1011r0111

- Means
 - State is r
 - Left-Hand-Side (LHS) is 1011
 - Right-Hand-Side (RHS) is 0111
 - Head is on RHS 0
Configurations

- $uarbv$ yields $upacv$ if
 - $\xi(r,b) = (p,c,L)$

- $uarbv$ yields $uacpv$ if
 - $\xi(r,b) = (p,c,R)$

- Special cases: rbv yields pcv if
 - $\xi(r,b) = (p,c,L)$

- wr is the same as $wr--$
More configurations

- We have
 - starting configuration q_0w
 - accepting configuration $w_0q_{\text{accept}}w_1$
 - rejecting configuration $w_0q_{\text{reject}}w_1$
- halting configurations
 - $w_0q_{\text{accept}}w_1$
 - $w_0q_{\text{reject}}w_1$
Accepting a language

- TM M accepts input w if a sequence of configurations C_1, C_2, \ldots, C_k exist
 - C_1 is start configuration of M on w
 - Each C_i yields C_{i+1}
 - C_k is an accepting configuration
- The collection of strings that M accepts is the language of M, denoted by $L(M)$
Detailed example

- M1 accepting \(\{ w\#w \mid w \in \{0,1\}^* \} \)
- Page 133 of Sipser’s book.
Enumerable languages

- Definition: A language is \textit{(recursively)} enumerable if some TM accepts it
 - In some other textbooks Turing-recognizable
Enumerable languages

On an input to a TM we may
- accept
- reject
- loop (run for ever)

Not very practical: never know if TM will halt
Enumerable languages

- Definition: A TM *decides* a language if it always halts in an accept or reject state. Such a TM is called a *decider*.

- Definition: A language is *decidable* if some TM decides it.
 - Some textbooks use *recursive* instead of *decidable*.

- Therefore, every decidable language is enumerable, but not the reverse!
Example of decidable language

Here is a decidable language

- $L=\{a^ib^jc^k \mid ix j = k, \ l,j,k > 0\}$

- Because there exist a TM that decides it

- How?
Example of decidable language

How?
1. Scan from left to right to check that input is of the form $a^*b^*c^*$
2. Return to the start
3. Cross off an a and
4. Scan right till you see an a
5. Mark each b and scan right till you see an a
6. Cross off that c
7. Move left to the next b, and repeat previous two steps until all b's are marked
8. Unmark all b's and go to the start of the tape
9. Goto step 1 until all a's are crossed off
10. Check if all c's are crossed off; if so accept; otherwise reject
Example of decidable language

- given,
 - aabbbcccccc
Example of decidable language

given,
- aabbccccccc
- a\abbbccccccc
- abbbccccccc
Example of decidable language

- given,
 - aabbbcccccc
 - \emptysetabbbcccccc
 - abbbcccccc
 - abbb\incccccc
Example of decidable language

- given,
 - aabbbbcccccc
 - aabbbbcccccc
 - abbbcccccc
 - abbbcccccc
 - abbbcccccc
Example of decidable language

- given,
 - aabbbcccccc
 - \(\emptyset\)abbbcccccc
 - abbbcccccc
 - abbb\text{\(\emptyset\)}cccccc
 - abbb\text{\(\emptyset\)}cccccc
 - abbb\text{\(\emptyset\)}cccccc
 - abbb\text{\(\emptyset\)}cccccc
 - aabbbccc
 - aabbbccc
Example of decidable language

given,
- aabbbccccccc
- aabbbccccccc
- abbbccccccc
- abbbccccccc
- abbbccccccc
- abbbccccccc
- abbbccccccc
- abbbccccccc
- bbbcccc bbbcc bbbc bbb
TM: Variants

- Turing Machine head stays put
 - Does not add any power
- Nondeterminism added to TMs
 - Does not add any power
Many models have been proposed for general-purpose computation.

Remarkably all “reasonable” models are equivalent to Turing Machines.

All “reasonable” programming languages like C, C++, Java, Prolog, etc are equivalent.

The notion of an *algorithm* is model-independent!
What is an algorithm?

- Informally
 - A recipe
 - A procedure
 - A computer program

- Historically
 - Notion has long history in Mathematics (Al-khwarizmi), but
 - Not precisely defined until 20th century
 - Informal notion rarely questioned, but are insufficient
Hilbert’s 10th problem

- Hilbert’s tenth problem (1900): Find a finite algorithm that decides whether a polynomial has an integer root.
What is a polynomial?

- A **polynomial** is a sum of terms, each term is a product of variables and constants (coefficients).
- A **root** of a polynomial is an assignment of values to the variables such that the value of the polynomial is 0.
- $x=2$ and $y=2$ is a root for $5x + 15y = 25$.
- There is no such algorithm (1970)!
 - Mathematics of 1900 could not have proved this, because they didn’t have a formal notion of an algorithm.
 - Formal notions are required to show that no algorithm exists.
Church-Turing Thesis

- Formal notions appeared in 1936
 - Lambda-calculus of Alonzo Church
 - Turing machines of Alan Turing
 - These definitions look very different, but are equivalent

- The Church-Turing Thesis:
 - The intuitive notion of algorithms equals Turing machines algorithms

- In 1970, it was shown that no algorithm exists for testing whether a polynomial has integral roots
Relationships among machines

- NFA/DFA
- PDA
- NPDA
- TM
Relationships among languages

- **Regular**
- **Context-free**
- **Decidable**
- **Enumerable**
Conclusions

Turing Machines

definition

examples

Enumerable/decidable languages
definition

Next: Decidability Theory