CS 208: Computing Theory

Prof. Dr. Brahim Hnich
Faculty of Computer Sciences
Izmir University of Economics
Automata Theory

Regular Expressions
Regular expressions

- Recall: a language is a set of strings
- Regular expressions: A notation for building up languages
 - Example: \((0 \cup 1) \ 0^*\)
 - 0 and 1 are shorthand for \{0\} and \{1\}
 - So \((0 \cup 1) = \{0\} \cup \{1\} = \{0,1\}\)
 - \(0^*\) is \(\{0\}^* = \{\varepsilon, 0, 00, 000, 0000, 00000, 000000, \ldots\}\)
 - Concatenation (\(\circ\)), like multiplication is implicit
 - \((0 \cup 1) \ 0^*\) is the language of all strings starting with 0 or 1 followed by any number of 0’s
- Usually used in text editors or shell script
 - Lexical analyzer in any compiler
More examples

- Let Σ be an alphabet
 - The regular expression Σ is a language of one symbol strings
 - Σ^* is all strings
 - Σ^*1 is all strings ending in 1
 - $0\Sigma^*U\Sigma^*1$ is all strings starting in 0 or ending in 1
Four operations
- Star (highest precedence)
- Concatenation
- Union (least precedence)
- Parenthesis used to change usual precedence
Formal definition: regular expression

- **Inductive definition**
 - R is a regular expression if R is
 - a for some a in \(\Sigma \)
 - \(\varepsilon \)
 - \(\emptyset \)
 - \((R_1 \cup R_2) \) and R1 and R2 are regular expressions
 - \((R_1 \circ R_2) \) and R1 and R2 are regular expressions
 - \((R_1^*) \) and R1 is a regular expression
Let $L(R)$ denote the language defined by regular expression R

- $L(R)$ is defined as shown in Table

<table>
<thead>
<tr>
<th>R</th>
<th>L(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>${a}$</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ϵ</td>
<td>${\epsilon}$</td>
</tr>
<tr>
<td>$(R_1 \cup R_2)$</td>
<td>$L(R_1) \cup L(R_2)$</td>
</tr>
<tr>
<td>$(R_1 \circ R_2)$</td>
<td>$L(R_1) \circ L(R_2)$</td>
</tr>
<tr>
<td>$(R_1)^*$</td>
<td>$L(R_1)^*$</td>
</tr>
</tbody>
</table>
Remarkable fact

- **Theorem**: A language is regular if and only if some regular expression describes it.

- This theorem states two things

 - If a language is described by a regular expression, then it is regular (\leftarrow)

 - If a language is regular, then it can be described by a regular expression (\rightarrow)
Proof (\(\leftarrow\))

- If a language is described by a regular expression, then it is regular (\(\leftarrow\))
 - Given a regular expression describing some language \(A\), we show how to convert \(R\) into a NFA recognizing \(A\)
 - By previous result: If an NFA recognizes \(A\), then \(A\) is regular
NFA accepting regular expression

- $R = a \in \Sigma$

Diagram:

- Start state q_1
- Transition on a from q_1 to q_2
- q_2 is the accept state
NFA accepting regular expression

\[R = \varepsilon \]
NFA accepting regular expression

\[R = \emptyset \]
NFA accepting regular expression

\[R = (R_1 \cup R_2) \]
NFA accepting regular expression

- $R = (R_1 \cup R_2)$
NFA accepting regular expression

- $R = (R_1 \circ R_2)$
NFA accepting regular expression

Let $R = (R_1 \circ R_2)$.
NFA accepting regular expression

\[R = (R1)^* \]
NFA accepting regular expression

\[R = (R1)^* \]
Example

\[R = a \]
Example

\[R = b \]
Example

$R = ab$
Example

\[R = ab \cup a \]
Example

\[R = (ab \cup a)^* \]
Nonregular languages

- We have made a lot of progress understanding what finite automata can do

- But, what can’t they do?
Limitations of finite automata

- \(B = \{0^n1^n \mid 0 \leq n\} \)
 - Examples: 01, 0011, 000111,....
 - Machines must “remember” how many 0s have been seen so far as it reads the input!
 - Impossible with finite automata
 - Because the number of 0s isn’t limited, the machine will have to keep track of an unlimited number of possibilities (states!)
Limitations of finite automata

\[C = \{ w \mid w \text{ has an equal number of 0s and 1s} \} \]

- Examples: 01, 011100, 010101, ...
- Machines must “remember” how many 0s and 1s have been seen so far as it reads the input!
- Impossible with finite automata
 - Because the number of 0s and 1s isn’t limited, the machine will have to keep track of an unlimited number of possibilities (states!)
Limitations of finite automata

- \(D = \{ w \mid w \) has an equal number of occurrences of 01 and 10 as substrings\}
 - Examples: 00, 011100, 01010101010,....
 - Machines must “remember” how many 01s and 10s have been seen so far as it reads the input!
 - Impossible with finite automata
 - Because the number of 01s and 10s isn’t limited, the machine will have to keep track of an unlimited number of possibilities (states!)
Limitations of finite automata

- \(D = \{ w \mid w \text{ has an equal number of occurrences of 01 and 10 as substrings} \} \)
 - Examples: 00, 011100, 01010101010,....
 - Machines must “remember” how many 01s and 10s have been seen so far as it reads the input!
 - Impossible with finite automata
 - Because the number of 01s and 10s isn’t limited, the machine will have to keep track of an unlimited number of possibilities (states!)
Limitation of finite automata

- Our intuition may fail us (remember language D)
- So, how to prove that a certain language is not regular?
 - Pumping Lemma
Pumping lemma

- We will show that all regular languages have a special property
 - If a string is longer than a certain critical length \(l \), then it can be “pumped” to a larger length by repeating an internal substring

- This is a powerful technique for showing that a language is not regular!
Theorem: If A is a regular language, then there is a number p (the pumping length) where, if s is any string of length at least p, then s may be divided into three pieces, $s = xyz$, such that

1. For each $0 \leq i$, $xy^iz \in A$
2. $|y| > 0$
3. $|xy| \leq p$
Pumping lemma

- **Theorem**: If A is a regular language, then there is a number p (the pumping length) where, if s is any string of length at least p, then s may be divided into three pieces, $s = xyz$, such that

1. For each $0 \leq i$, $xyz^i \in A$: note that y^0 is ε

2. $|y| > 0$: without this the theorem is trivially true!

3. $|xy| \leq p$: x and y together should not have a length bigger than p
How to use the pumping lemma

- To show that language A is not regular

- Approach: Proof by contradiction
 - Assume A is regular in order to obtain a contradiction
 - Use the pumping lemma to guarantee the existence of pumping length p
 - Find a string s of length p or more that cannot be pumped
 - Demonstrate that s cannot be pumped by considering all possible ways of dividing s into x, y, and z, and for each division find an i where xyz does not belong to A
Prove that $B = \{0^n1^n \mid 0 \leq n\}$ is not regular

- Assume B is regular
- Because of pumping lemma, we have the pumping length p
- Now consider string s to be 0^p1^p
- Theorem says $s = xyz$, where $xy^i z$ belongs to B
 - y is all 0s in s, then we have too many 0’s in $xy^i z$
 - y is all 1s in s, then we have too many 1’s in $xy^i z$
 - y is mixed of 0s followed by 1s in s, then $xy^i z$ will have 0s and 1s out of order
Another Application

- Prove that $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$ is not regular
 - Assume C is regular
 - Because of pumping lemma, we have the pumping length p
 - Now consider string s to be $0^p 1^p$
 - Theorem says $s = xyz$, where $xy^i z$ belongs to C
 - y is all 0s in s, then we have too many 0’s in $xy^i z$
 - y is all 1s in s, then we have too many 1’s in $xy^i z$
 - y is mixed of 0s and 1s in s, then by condition 3, we have $|xy|$ is less than or equal to p, so y will have only 0s
Conclusions

Regular expression
 closure properties
 union
 concatenation
 star

Non-regular languages
 pumping lemma

Next: Context-free grammars