1. (20 points) Design a PDA that recognizes the following language: \(\{0^i1^j | i > 0, j \geq 0 \} \)

2. (20 points)
 Design a PDA over \(\Sigma = \{a, b\} \) that recognizes the following language:
 \(L = \{a^n b^{2(n+m)} c^m | n, m \geq 0 \} \)

3. (20 points)
 Design a PDA over \(\Sigma = \{a, b\} \) that accepts all strings in which the number of a’s is equal to the number of b’s.

4. (20 points) Design a TM over \(\Sigma = \{0, 1\} \) that concatenates a string to itself. Assume that the input is given on the tape as \#w where w is the input string. You must output \#ww on the tape. Your TM must halt! Clearly indicate all details of your TM. You can assume that w is not empty.
 For example, given the initial tape of \#00110, the TM must halt with the following tape: \#0011000110

5. (20 points) Given the following transition function for Turing Machine \(T \):

 \[
 \begin{align*}
 (q_0, \#) &\rightarrow (q_1, \#, R) \\
 (q_0, a) &\rightarrow (q_0, a, R) \\
 (q_0, b) &\rightarrow (q_1, b, R) \\
 (q_1, a) &\rightarrow (q_1, a, R) \\
 (q_1, b) &\rightarrow (q_2, b, L) \\
 (q_2, a) &\rightarrow (q_2, b, L) \\
 (q_2, b) &\rightarrow (q_3, b, R) \\
 (q_3, a) &\rightarrow (q_0, a, R) \\
 (q_3, b) &\rightarrow (q_3, b, R) \\
 (q_3, \#) &\rightarrow (q_1, \#, R)
 \end{align*}
 \]
 The initial state is \(q_0 \) and the accept state is \(q_4 \).

 a) (10) Given the initial tape of \textbf{aababa}\# what is the final configuration of the tape?
 b) (10) Given the initial tape of \textbf{baabaabab}\# what is the final configuration of the tape?
 c) (10) What does this Turing Machine do in general?