
 

MATH 218 Ch1: Experiments, Models, and Probabilities 
 

MATLAB (software package by Mathworks) will be used to simulate experiments with 
random outcomes. For this purpose, a pseudo-random number generator which 
produces a sequence of random numbers between 0 and 1 can be utilized, i.e. 
rand(m, n) produces an m x n array of uniformly distributed pseudo-random numbers.   
 
For a Matlab simulation we first generate a vector R of N random numbers: 
>> N = 100; 
>> R = rand(1, N); 
To simulate an experiment that contains an event with probability p, each random 
number r produced by above command will be tested such that if r < p, event occurs; 
otherwise it does not occur.  
For example, to simulate a coin flipping experiment which yields heads with 
probability 0.4, tails with probability 0.5, or lands on its edge with probability 0.1, and 
100 simulations are needed:  
In this case, we generate vector X as a function of R to represent 3 possible 
outcomes: X(i)=1 if flip i was heads, X(i)=2 if flip i was tails, and X(i)=3 if flip i landed 
on the edge. 
>> X = (R <= 0.4) + (2*(R > 0.4).*(R <= 0.9)) + (3*(R > 0.9)); 
>> [N, Y] = hist(X, 1:3); 
Plot the number of occurances of each outcome i for N=100 trails of this experiment 
>> figure, bar(Y, N) 
>> xlabel(‘Outcome i’), ylabel(‘Number of occurances of outcome i’);  
 
Next, the following Matlab function can be used to simulate two-coin experiment in 
Example 1.27 in textbook: 
 
>> function [C, H]  = twocoin(n);  % n: number of trials 

C = ceil(2*rand(n, 1)); % C(i) = 1 if coin 1, C(i) = 2 if coin 2 is chosen for trial i 
P = 1 – (C/4);  % P(i) = 0.75 if C(i) = 1, otherwise if C(i) = 2 
H = (rand(n, 1) < P);  

     end 
 
This function generates vectors C and H for n trials of this experiment. C(i) indicates 
which coin (biased =1 or fair =2) is chosen, and H(i) is the simulated result of a coin 
flip with heads, H(i) = 1 occurring with probability P(i).     
 
Another simulation example is given below about the reliability of a 6 component 
system which has the following configuration: 

 
To simulate 100 trials of the six-component test (such that each component works 
with probability q), we use the following Matlab function: 



 
 

The n×6 matrix W is a logical matrix such that W(i,j)=1 if component j of device i 
works properly. Note that D(i)=1 if device i works. Otherwise, D(i)=0. Hence, N is the 
number of working devices.  
The result of 10 repetitions of the 100 trials for q=0.2 is given below: 
>> for n=1:10, w(n)=reliable6(100,0.2); end 
>> w 
w = 
82 87 87 92 91 85 85 83 90 89 
>> 
While the probability the device works is actually 0.8663. 
 
For discrete random variables, the PMFs and CDFs for the families of random 
variables can be computed as follows: 
For finite discrete random variable X defined by a set of sample values SX = {s1,...,sn} 
with corresponding probabilities pi = PX(si) = P[X = si], p = [p1 ... pn]’, the following 
Matlab function returns yi = PX(xi): 
function pmf=finitepmf(sx,px,x) 
% finite random variable X: 
% vector sx of sample space 
% elements {sx(1),sx(2), ...} 
% vector px of probabilities  
% px(i)=P[X=sx(i)] 
% Output is the vector  
% pmf: pmf(i)=P[X=x(i)] 
pmf=zeros(size(x(:))); 
for i=1:length(x) 
    pmf(i)= sum(px(find(sx==x(i)))); 
end 
 
By applying its definition, the CDF can be calculated simply as  
function cdf=finitecdf(s,p,x) 
% finite random variable X: 
% vector sx of sample space 
% elements {sx(1),sx(2), ...} 
% vector px of probabilities  
% px(i)=P[X=sx(i)] 
% Output is the vector  
% cdf: cdf(i)=P[X=x(i)] 
cdf=[]; 
for i=1:length(x) 
    pxi= sum(p(find(s<=x(i)))); 
    cdf=[cdf; pxi]; 
end 



Note that the CDF can also be computed by summing the PMF as 
>> cdf=cumsum(pmf); 
 
The sample values of random variables can be generated based on the calculation of 
the CDF first. For example, the m samples of a binomial (n, p) random variable can 
be generated as  
 
function x=binomialrv(n,p,m) 
% m binomial(n,p) samples  
r=rand(m,1); 
cdf=binomialcdf(n,p,0:n); 
x=count(cdf,r); 
 
 


