

MATH 218 Ch1: Experiments, Models, and Probabilities

MATLAB (software package by Mathworks) will be used to simulate experiments with
random outcomes. For this purpose, a pseudo-random number generator which
produces a sequence of random numbers between 0 and 1 can be utilized, i.e.
rand(m, n) produces an m x n array of uniformly distributed pseudo-random numbers.

For a Matlab simulation we first generate a vector R of N random numbers:
>> N = 100;
>> R = rand(1, N);
To simulate an experiment that contains an event with probability p, each random
number r produced by above command will be tested such that if r < p, event occurs;
otherwise it does not occur.
For example, to simulate a coin flipping experiment which yields heads with
probability 0.4, tails with probability 0.5, or lands on its edge with probability 0.1, and
100 simulations are needed:
In this case, we generate vector X as a function of R to represent 3 possible
outcomes: X(i)=1 if flip i was heads, X(i)=2 if flip i was tails, and X(i)=3 if flip i landed
on the edge.
>> X = (R <= 0.4) + (2*(R > 0.4).*(R <= 0.9)) + (3*(R > 0.9));
>> [N, Y] = hist(X, 1:3);
Plot the number of occurances of each outcome i for N=100 trails of this experiment
>> figure, bar(Y, N)
>> xlabel(‘Outcome i’), ylabel(‘Number of occurances of outcome i’);

Next, the following Matlab function can be used to simulate two-coin experiment in
Example 1.27 in textbook:

>> function [C, H] = twocoin(n); % n: number of trials

C = ceil(2*rand(n, 1)); % C(i) = 1 if coin 1, C(i) = 2 if coin 2 is chosen for trial i
P = 1 – (C/4); % P(i) = 0.75 if C(i) = 1, otherwise if C(i) = 2
H = (rand(n, 1) < P);

 end

This function generates vectors C and H for n trials of this experiment. C(i) indicates
which coin (biased =1 or fair =2) is chosen, and H(i) is the simulated result of a coin
flip with heads, H(i) = 1 occurring with probability P(i).

Another simulation example is given below about the reliability of a 6 component
system which has the following configuration:

To simulate 100 trials of the six-component test (such that each component works
with probability q), we use the following Matlab function:

The n×6 matrix W is a logical matrix such that W(i,j)=1 if component j of device i
works properly. Note that D(i)=1 if device i works. Otherwise, D(i)=0. Hence, N is the
number of working devices.
The result of 10 repetitions of the 100 trials for q=0.2 is given below:
>> for n=1:10, w(n)=reliable6(100,0.2); end
>> w
w =
82 87 87 92 91 85 85 83 90 89
>>
While the probability the device works is actually 0.8663.

For discrete random variables, the PMFs and CDFs for the families of random
variables can be computed as follows:
For finite discrete random variable X defined by a set of sample values SX = {s1,...,sn}
with corresponding probabilities pi = PX(si) = P[X = si], p = [p1 ... pn]’, the following
Matlab function returns yi = PX(xi):
function pmf=finitepmf(sx,px,x)
% finite random variable X:
% vector sx of sample space
% elements {sx(1),sx(2), ...}
% vector px of probabilities
% px(i)=P[X=sx(i)]
% Output is the vector
% pmf: pmf(i)=P[X=x(i)]
pmf=zeros(size(x(:)));
for i=1:length(x)
 pmf(i)= sum(px(find(sx==x(i))));
end

By applying its definition, the CDF can be calculated simply as
function cdf=finitecdf(s,p,x)
% finite random variable X:
% vector sx of sample space
% elements {sx(1),sx(2), ...}
% vector px of probabilities
% px(i)=P[X=sx(i)]
% Output is the vector
% cdf: cdf(i)=P[X=x(i)]
cdf=[];
for i=1:length(x)
 pxi= sum(p(find(s<=x(i))));
 cdf=[cdf; pxi];
end

Note that the CDF can also be computed by summing the PMF as
>> cdf=cumsum(pmf);

The sample values of random variables can be generated based on the calculation of
the CDF first. For example, the m samples of a binomial (n, p) random variable can
be generated as

function x=binomialrv(n,p,m)
% m binomial(n,p) samples
r=rand(m,1);
cdf=binomialcdf(n,p,0:n);
x=count(cdf,r);

