Semiconductor Memory Types

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Category</th>
<th>Erasure</th>
<th>Write Mechanism</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random-access memory (RAM)</td>
<td>Read-write memory</td>
<td>Electrically, byte-level</td>
<td>Electrically</td>
<td>Volatile</td>
</tr>
<tr>
<td>Read-only memory (ROM)</td>
<td>Read-only memory</td>
<td>Not possible</td>
<td>Masks</td>
<td></td>
</tr>
<tr>
<td>Programmable ROM (PROM)</td>
<td>Read-only memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erasable PROM (EPROM)</td>
<td></td>
<td>UV light, chip-level</td>
<td>Electrically</td>
<td>Nonvolatile</td>
</tr>
<tr>
<td>Electrically Erasable PROM</td>
<td>Read-mostly memory</td>
<td>Electrically, byte-level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(EEPROM)</td>
<td></td>
<td>Electrically, block-level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semiconductor Memory

• RAM
 – Misnamed as all semiconductor memory is random access
 – Read/Write
 – Volatile
 – Temporary storage
 – Static or dynamic
Memory Cell Operation

(a) Write
Select → Cell → Data in

(b) Read
Select → Cell → Sense
Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue
 - Level of charge determines value
Dynamic RAM Structure

- Address line
- Transistor
- Storage capacitor
- Bit line B
- Ground
DRAM Operation

- Address line active when bit read or written
 - Transistor switch closed (current flows)
- Write
 - Voltage to bit line
 - High for 1 low for 0
 - Then signal address line
 - Transfers charge to capacitor
- Read
 - Address line selected
 - Transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compares with reference value to determine 0 or 1
 - Capacitor charge must be restored
Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital
 - Uses flip-flops
Stating RAM Structure
Static RAM Operation

• Transistor arrangement gives stable logic state

• State 1
 —C_1 high, C_2 low
 —$T_1 T_4$ off, $T_2 T_3$ on

• State 0
 —C_2 high, C_1 low
 —$T_2 T_3$ off, $T_1 T_4$ on

• Address line transistors $T_5 T_6$ is switch

• Write – apply value to B & compliment to B

• Read – value is on line B
SRAM v DRAM

• Both volatile
 — Power needed to preserve data

• Dynamic cell
 — Simpler to build, smaller
 — More dense
 — Less expensive
 — Needs refresh
 — Larger memory units

• Static
 — Faster
 — Cache
Read Only Memory (ROM)

- Permanent storage
 - Nonvolatile
- Microprogramming (see later)
- Library subroutines
- Systems programs (BIOS)
- Function tables
Types of ROM

- Written during manufacture
 - Very expensive for small runs

- Programmable (once)
 - PROM
 - Needs special equipment to program

- Read “mostly”
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically
Organisation in detail

• A 16Mbit chip can be organised as 1M of 16 bit words
• A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so on
• A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array
 —Reduces number of address pins
 - Multiplex row address and column address
 - 11 pins to address \(2^{11}=2048\)
 - Adding one more pin doubles range of values so x4 capacity
Refreshing

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance
Typical 16 Mb DRAM (4M x 4)
Packaging

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM
256kByte Module Organisation
1MByte Module Organisation

Memory Address Register (MAR)

Chip Group Enable

Select 1 of 4 Groups

All chips 512 words by 512 bits, 2-terminal cells

Memory Buffer Register (MBR)
Error Correction

- Hard Failure
 - Permanent defect

- Soft Error
 - Random, non-destructive
 - No permanent damage to memory

- Detected using Hamming error correcting code
Error Correcting Code Function
Advanced DRAM Organization

• Basic DRAM same since first RAM chips
• Enhanced DRAM
 — Contains small SRAM as well
 — SRAM holds last line read (c.f. Cache!)
• Cache DRAM
 — Larger SRAM component
 — Use as cache or serial buffer
Synchronous DRAM (SDRAM)

- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock, CPU knows when data will be ready
- CPU does not have to wait, it can do something else
- Burst mode allows SDRAM to set up stream of data and fire it out in block
- DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)
Figure 5.13 SDRAM Read Timing (Burst Length = 4, CAS latency = 2)
RAMBUS

- Adopted by Intel for Pentium & Itanium
- Main competitor to SDRAM
- Vertical package – all pins on one side
- Data exchange over 28 wires < cm long
- Bus addresses up to 320 RDRAM chips at 1.6Gbps
- Asynchronous block protocol
 - 480ns access time
 - Then 1.6 Gbps
RAMBUS Diagram
DDR SDRAM

- SDRAM can only send data once per clock
- Double-data-rate SDRAM can send data twice per clock cycle
 - Rising edge and falling edge
Cache DRAM

• Mitsubishi

• Integrates small SRAM cache (16 kb) onto generic DRAM chip

• Used as true cache
 — 64-bit lines
 — Effective for ordinary random access

• To support serial access of block of data
 — E.g. refresh bit-mapped screen
 - CDRAM can prefetch data from DRAM into SRAM buffer
 - Subsequent accesses solely to SRAM
Reading

- The RAM Guide
- RDRAM