
Yazılım Etmenleri Kullanarak Çok Sayıda
Zindan Bölümünün Yöntemsel Olarak Üretilmesi

Kaya Oğuz[0000−0002−1860−9127] ve Jane Lameski

İzmir Ekonomi Üniversitesi
Bilgisayar Mühendisliği Bölümü

Sakarya Cad. No:156, 35330, Balçova, İzmir
kaya.oguz@ieu.edu.tr, jane.lameski96@gmail.com

Özet. Yöntemsel içerik üretimi, oyun içeriğinin algoritmik olarak ya-
ratılmasıdır. Zindanlar, rol yapma oyunlarında oyuncunun, oyuncu-olma-
yan karakterlerin ve yaratıkların çevreleriyle ve birbirleriyle etkileşime gi-
rebileceği kapalı ve sınırlı bir alan olarak sıklıkla kullanılırlar. Yapısal ola-
rak zindanlar çeşitli boyutta odalardan ve bu odaları birbirine bağlayarak
keşif ve gezinme sağlayan koridorlardan oluşurlar. Odaların temel se-
viye pozisyonları aynıdır ve odaların birbirleriyle olan bağlantıları zindan
bölümü içindeki odalarla sınırlıdır. Bu zindan bölümleri çeşitli yöntem-
sel içerik üretimi algoritmaları ile üretilebilirler. Fakat, yazılım etmen-
leri bu konuda çok nadir kullanılmaktadır. Etmenlerin kullanımı, zindan
üretimi sırasındaki işlerin tanımlanmasına, soyutlanmasına ve ayrık nes-
neler içinde kapsanmasına yardımcı olur. Ayrıca üretim süreci üzerinde
daha fazla kontrol imkanı sunarlar. Bu çalışmada iki ana katkımız bu-
lunmaktadır; odalar arasındaki bağlantıları oluştururken sadece odanın
bulunduğu bölümdeki değil, zindandaki bütün odaları dikkate alıyoruz;
zindanların ayrık bölümlerden değil, tüm bölümlerin bağlantılı olmasına
dayanan ve yazılım etmenleri kullananan bir yöntem öneriyoruz.

Anahtar Kelimeler: Yöntemsel içerik üretimi, Yazılım etmenleri, Ayrık
kümeler

Procedural Generation of Multiple Dungeon
Levels Using Software Agents

Kaya Oğuz[0000−0002−1860−9127] and Jane Lameski

Izmir University of Economics
Department of Computer Engineering

Sakarya Cad. No:156, 35330, Balçova, Izmir, Turkey
kaya.oguz@ieu.edu.tr, jane.lameski96@gmail.com

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



Abstract. Procedural content generation (PCG) is the algorithmic cre-
ation of game content. Dungeons are commonly used in role playing
games (RPG) as closed and confined areas in which the player, the non-
player characters (NPCs), and monsters can interact with the environ-
ment and with each other. Structurally, dungeons are made up of rooms
of various sizes, connected with corridors that provide a means of explo-
ration and navigation. The rooms have the same base level position and
the connectedness of the rooms is limited to the rooms within the level.
These levels can be generated by several PCG algorithms. However, soft-
ware agents are rarely used in this regard. Using software agents helps
the identification and isolation of concerns while encapsulating these con-
cerns in discrete entities. It also gives greater control on the generation
process. We have two main contributions; we consider the rooms on all
levels while creating a dungeon of connected rooms; and we propose a
method for the generation of levels using software agents for not discrete
but connected levels of dungeons.

Keywords: Procedural content generation, Software agents, Disjoint
sets

1 Introduction

Procedural content generation (PCG) is the go-to solution for developers to
improve the replayability of their game while reducing the time to create the
content manually. PCG has become commonplace because of the ever growing
and competitive nature of the game industry where several games are published
for personal computers, game consoles and mobile devices.

In its essence, PCG is the algorithmic creation of content. One of its early
implementations can be found in games such as Rogue [25], and its derivatives,
Diablo [4], in which the algorithm creates a new set of levels, or the so-called
dungeons in Rogue-likes, along with items, monsters, treasures, and anything else
that is required. While PCG is mostly used to create indoor [13] and outdoor
levels [6], it has also been used to create quests [9,8], buildings [15], virtual worlds
[22], cities [28,24], and stories [23]. A survey of PCG on all fronts is available
[11], so are a textbook [20] and a more focused survey on procedural dungeon
generation [13].

Dungeons are commonly used in role playing games (RPG) as closed and con-
fined areas in which the player, the non-player characters (NPCs), and monsters
can interact with the environment and with each other. Structurally, dungeons
are made up of rooms of various sizes, connected with corridors that provide
a means of exploration and navigation. In most cases, the dungeons are made
up of separate levels that are connected via a group of connecting tiles, such as
stairs or a passage that loads another dungeon level. Because of this single point
of connection, it is relatively trivial to connect two or more separately generated
but adjacent dungeon levels.

The floor plan of a dungeon level is basically a two-dimensional representation
while a three-dimensional representation can be used in the game. The rooms



have the same base level position and the connectedness of the rooms is limited
to the rooms within the level. In this study, we have extended this approach
to three-dimensions, while maintaining the trivial structural generation of the
level.

There are several approaches that are commonly used in procedural dungeon
generation, and they will be discussed in the following section. However, software
agents, entities that can sense their environment and act accordingly [18], are
rarely mentioned as a method. Using software agents in dungeon generation helps
the identification and isolation of concerns while encapsulating these concerns in
discrete entities. It also gives greater control on the generation process. Although
the purpose of the PCG algorithm is to minimize human intervention in the
generation of the content, a set of parameters to control the output is always
welcome. Our study contributes to the existing literature by proposing a method
that uses software agents that consider all rooms in all levels for connectivity
during the generation of dungeon levels.

The remaining paper is structured as follows. The following section discusses
the existing approaches to generate dungeons. Our approach which incorporates
software agents to generate levels that are connected in three dimensions, without
the limitations of a single level generation process is detailed in Section 3. The
results are given in Section 4. The paper concludes with Section 5 which discusses
the results and the future work.

2 Related Work

Dungeon or level generation is one of the most studied and commonly used
branches of PCG algorithms. The purpose of this study is not to cover all of
them; therefore the foremost methods will be mentioned. Interested readers are
kindly directed to the relatively recent survey on procedural dungeon generation
by Linden et al. [13] as a starting point.

A typical straightforward yet effective approach to generating dungeon levels
is to place rooms randomly and connect them with corridors. Nystrom places
randomly generated rooms in a confined space and then connects the rooms via
a maze-like approach [16]. Another approach is to use space partitioning, such
as binary space partitioning and store the connections in a space-partitioning
tree so that the connectivity of the rooms can be arranged [19].

Although it does not have the structure of a typical dungeon, cellular au-
tomata have been used to generate levels with an organic and natural feel, rather
than a man-made synthetic feel [12,1]. Cellular automata are the application of
a set of rules to a grid of cells that have states that change according to these
rules. Cellular automata is mostly associated with Conway’s “Game of Life” [10],
but they can also be used as a method that have very few parameters and a loose
control on the output of an organic cave-like indoor levels.

While they are mostly used to create language and code parsers, generative
grammars can be used generate game levels if the alphabet of the grammar refers
to specific parts of the level, and the rules refer to the ways these parts can be



combined [9]. Dormans used generative grammars to combine the generation of
missions with the generation of levels to create the two vital but highly coupled
parts of the gameplay. Grammars have become a common approach to generate
levels, such as the bachelor thesis of Adams [2] and the dungeon crawler by
Linden et al.[14].

Evolutionary methods, such as genetic algorithms, are also popular in the
procedural generation of dungeons. Genetic algorithms require the representa-
tion of the level as a chromosome, and a fitness function to evaluate the randomly
generated chromosomes. Depending on the outcome of the fitness function, chro-
mosomes can be used to produce new chromosomes, until a satisfactory fitness
value is reached. Valtchanov and Brown use a tree structure for the represen-
tation of the level, and a fitness function that favors tightly packed clusters of
rooms that have efficient connections [26]. Other studies are by Ashlock et al.
which focuses on maze like levels [3], by Brown et al. in which they apply evo-
lutionary algorithms to generate levels for the recently popular game Hotline
Miami [5], and by Ruela and Delgado who also have worked on graph-based
procedural content generation [17].

Software agents have been used to generate terrains [7] and 2D platform-
ers [27], both of which have significantly different structures than dungeons. An
application of software agents to procedural level generation is given in the third
chapter of PCG book by Shaker et al. [19]. This approach uses an agent that
digs tunnels and create rooms sequentially. Recently, Sheffield and Shah have
improved this approach by incorporating reinforcement learning algorithm to
the agent [21].

3 Proposed Method

There are several advantages for using software agents in the procedural gen-
eration of dungeons. The foremost advantage is the separation of concerns by
encapsulating each to a single discrete entity. For each of these agents with differ-
ent concerns, a different set of parameters could be given, improving the control
of the developer over the creation process. It is also possible to switch agents
with different approaches for the same problem.

With all these advantages in mind, we have come up with several agent types
that operate on different parts of the dungeon with a loose hierarchical system.
As shown in Figure 1, the dungeon agent is at the top, because it calls other
agents sequentially to create the dungeon.

3.1 Dungeon Agent

The dungeon agent (DA) is responsible for the generation of dungeon levels,
therefore it accepts parameters for the number of these levels, n, the width w
and height h of each floor, space size limit s which depends on w and h, and
probability value p for partitioning probability, b for blocking some of the regions
for variety.



Fig. 1. The loose hierarchical view of the agents. The level agent calls for the main
agents to create the structure of the dungeon, while the room agent calls item agent
to create and position items in rooms.

The agent creates a space of size w × h and passes w, h, s, p and b to n
number of spawned floor agents (FA). The partitioned spaces from all floors are
retrieved and DA spawns a room agent (RA) for each of these spaces. DA then
creates a connection agent (CA) and passes the spaces to retrieve the connections
and spawns a corridor agent (CRA) and passes the rooms and connections to
retrieve the corridors that connect these rooms. While this is the general flow
of DA, each agent works on its own by considering the entities created by other
agents.

3.2 Floor Agent

The floor agent is responsible for partitioning the space for each individual room.
It uses a simplified binary space partition algorithm which randomly divides the
defined area to two parts and continues to work on these parts until a threshold is
reached. The spaces are not saved in a binary tree, because their connection will
be handled by another agent. The flow of FA is detailed in Algorithm 1. The
listing contains utility functions such as Area and RandomValue which would
be available on any programming language library, or could be implemented
trivially.

As the Algorithm 1 shows, FA defines a simplified binary space partition
method and uses it recursively on generated spaces. If the area of current space
is greater than the SpaceLimit, then the method finds the longer edge of the
space. It randomly selects a point T on that edge to create two subspaces, S1 and
S2. FA rolls the dice for partitioning these spaces further by using the simplified
binary space partitioning method recursively or stop and add the subspace to L.
At this point the probability value p is reduced to p x p, making it more likely
to partition the space earlier in the recursive calls. This is a preference that can
be reversed, since we favored larger rooms to be available in the generated levels.



Algorithm 1: The Floor Agent uses a simplified binary space partitioning
approach to generate spaces.
Input : w, h, s, b, p

Output : L

Create space S at point (0, 0) with width w, height h

Create L, an empty list for generated spaces

SpaceLimit = Area(S) x s

Define and call SimplifiedBinarySpacePartition(S, p):

If Area(S) > SpaceLimit:

Find the longer edge of S, either its width or length

Randomly select a point T on that edge

Use T to create subspaces S1, S2

If RandomValue() > p:

SimplifiedBinarySpacePartition(S1, p x p)

Else:

Append S1 into list L

If RandomValue() > p:

SimplifiedBinarySpacePartition(S2, p x p)

Else:

Append S2 into list L

Else:

If RandomValue() > p:

Append S into list L

L contains a list of spaces

If the area of the space S is not greater than the SpaceLimit, then the method
checks the blocking probability and adds S to L.

3.3 Room and Item Agents

For each space generated by the floor agent, dungeon agent spawns a room agent
which works on the space given to it by generating a room that can fit into it.
It then spawns an item agent (IA) which randomly places items on the floors of
these rooms. IA receives a parameter m which limits the number of items it can
generate for a room.

The agents for room and items are implemented more straightforward than
other agents, although they can include a wide range of options depending on
the context of the game. In this case, the focus was on the demonstration of
agents, therefore a rectangular area and random spots on the floors were all that
was needed.

3.4 Connection and Corridor Agents

Connection agent is vital for the generation of connected rooms among all levels
of the dungeon. CA is spawned when the FA are done. It receives the spaces on



Algorithm 2: The Connection Agent uses disjoint sets a bounding box
collision detection to locate the adjacent spaces.
Input : List of spaces L

Output : List of connected spaces C

For each space S in L:

For each space T in L - {S}:

If S and T are on the same level:

If S and T share an edge:

Set T as a neighbor of S

Else:

If T is on the level above:

If Bounding Box Collision detects an overlap:

Add T as a neighbor of S

Add S as a neighbor of T

For each space S in L:

If S has no neighbors:

Remove S from L

Let C be the list of connections

Set all spaces to a set of their own

Until there is only one set left:

Randomly pick S from L

Randomly pick N from neighbors of S

If S and N are NOT in the same set:

Find the set of S, S1

Find the set of N, S2

Perform a union operation on S1 and S2

Store the connection between S and N in C

all levels and finds the adjacent spaces on the same level, or the levels above or
below. For the spaces on the same floor, it looks for the edges that are shared
among these spaces to define them as neighbors. For the spaces on different
floors, it uses a simple bounding box collision check to determine if two spaces
overlap.

The flow of CA is given in Algorithm 2. As the algorithm shows, the connec-
tion agent first determines the neighbors of each space. This is done by going
through the list of all spaces and comparing them to the list of remaining spaces.
If two spaces, S and T are on the same level, then the agent checks if they share
an edge. To do so, it runs a list of checks on the top left corner of the spaces,
along with their width and height. If they share an edge, then T is set as a neigh-
bor of S. The neighbors are stored as a list, so a space can have many neighbors.
If these spaces are not on the same floor, then it is possible that they overlap.



Bounding Box Collision can be used to find overlapping spaces and set them as
neighbors.

At this point, there might be some spaces that don’t have any neighbors
because of the blocked spaces. Connection agent finds and removes them from
the list of spaces.

In a regular level, all rooms are expected to be connected, providing accessi-
bility to each. In our study, the rooms on all floors are considered for connection.
This creates rooms that are inaccessible from their own floor, but another path
through other rooms on other floors is generated. To make sure that all rooms
are connected, the final part of the CA in Algorithm 2 uses the disjoint set ap-
proach with the union and find methods. It initializes all spaces on a set of their
own, and continues to apply the union function to the sets until there is only one
set left. It does so by first randomly picking a space S from the list of spaces L,
and randomly picking one of its neighbors N. If these spaces are not in the same
set, then they are joined by the union operation. Also, the connection between
them are stored in the list of connections C.

Once the CA is done, the disjoint set algorithm ensures the connectedness
of all rooms. These connections, along with the list of rooms, are passed to
the corridor agent. The corridor agent operates on the rooms in the connected
spaces. For each room R, it finds the room Q in the connected space. If they are
on the same floor, it finds their relative positions and draws a corridor from R to
Q. If they are on separate floors, it assigns a space in both rooms as stairs that
connects them together.

As with the room and item agents, the corridor agent is designed to serve
its purpose for the demonstration of agents. Several different approaches can be
used to extend its capabilities; such as using path finding algorithms to build
the corridors.

4 Results and Discussion

The time complexity of the algorithm is O(n2) where n is the number of spaces
generated in all levels. The algorithm compares each space with the other ones in
order to find the neighbors. Since the number of spaces are moderately low, the
agents complete their work within seconds. On the other hand, the generation
is usually done offline, so the current time complexity of the algorithm is well
within accepted values.

The agents are implemented using Python and the resulting maps are gen-
erated as image files. A sample output of the three levels of a dungeon with ten
levels is given in Figure 2. The parameters were; 1024× 1024 is given as the size
of each level, room size limit is set as the 0.05 percent of the total area, space
partitioning probability is set to 0.3 and the room block probability is set to
0.05. To keep the maps simpler, the items are not printed on the images. Since
the outputs are in two-dimensions, the stairs are shown as gray squares inside
the rooms. As the maps show, there are some rooms that are not accessible from
the rooms within the level itself, however the connections to the other rooms



Fig. 2. Three floors of ten dungeon levels generated by the agents.

above or below the level provide access to them. The effect of space partitioning
can be seen in the level on the left and right, while the room blocking probability
can be observed in the level on the left and the level in the middle.

The levels generated by this study look similar to the ones in the existing
literature. However, we introduce the multi-level connectivity of the rooms and
the realization of several software agents to generate the level. While we put
forward and implement these contributions, we would also like to discuss the
apparent improvements and existing weaknesses in this section.

Since the agents are kept relatively simple and straightforward in this prelim-
inary study, they were able to work in harmony without any apparent conflicting
issues in their linear fashion. The agents could be improved by adding variety
to their behaviours. A typical example would be incorporating random turns
in long corridors for the corridor agent, and using geometric shapes other than
rectangles for the room agents. More agent types could also be added; the room
agent could make use of more agents in their design, such as the inclusion of an
agent that can handle the lighting of the rooms, another one to position objects.

The agents could be redesigned so that they could be started simultaneously.
However currently this would not produce good results because in their current
form because the connection agent would require the generation of all rooms to
create paths that make use of rooms on other levels.

5 Conclusion and Future Work

We have defined a set of agents to handle the procedural generation of a dungeon.
Most dungeons provide several dungeon levels, each of which are isolated from
the remaining levels except their single point connections to the levels just above
or below them. The rooms on each level are connected and accessible within the
level. Besides using agents, our solution considers the rooms in all levels at the
same time and all of them for creating a connected set of rooms, on multiple
floors.



The lack of agents on the procedural content generation front is surprising,
because they provide several advantages; such as the separation of concerns and
the ability to replace agents with ones that have other purposes if need be.

The agents appear to generate the levels rather quickly even on an inter-
preter such as Python. A test run which included 100 levels, with room size
limit and room block probability both set to 0.05, is completed within seconds.
Compared to other agent based solutions our method provides more control on
the generation process because of using agents for each concern.

This preliminary work is planned to be ported to a game engine, such as
Unity, so that the dungeons can be immediately viewed in three dimensions,
along with their textures and objects. This will also allow us to create more
complicated agents that could consider more cosmetic challenges, such as the
placement of lights and objects in the rooms. From an object oriented point
of view, agents are also planned to define specific interfaces so that they could
easily be extended.

References

1. Adams, C., Parekh, H., Louis, S.J.: Procedural level design using an interactive
cellular automata genetic algorithm. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion. pp. 85–86. GECCO ’17, ACM, New
York, NY, USA (2017). https://doi.org/10.1145/3067695.3075614

2. Adams, D.: Automatic generation of dungeons for computer games. Bachelor thesis,
University of Sheffield (may 2002)

3. Ashlock, D., Lee, C., McGuinness, C.: Simultaneous dual level creation for
games. IEEE Computational Intelligence Magazine 6(2), 26–37 (May 2011).
https://doi.org/10.1109/MCI.2011.940622

4. Blizzard North: Diablo. Digital Game (December 1996)

5. Brown, J.A., Lutfullin, B., Oreshin, P.: Procedural content generation of level lay-
outs for hotline miami. In: 2017 9th Computer Science and Electronic Engineering
(CEEC). pp. 106–111 (Sep 2017). https://doi.org/10.1109/CEEC.2017.8101608

6. Doran, J., Parberry, I.: Controlled procedural terrain generation using software
agents. IEEE Transactions on Computational Intelligence and AI in Games 2(2),
111–119 (June 2010). https://doi.org/10.1109/TCIAIG.2010.2049020

7. Doran, J., Parberry, I.: Controlled procedural terrain generation using software
agents. IEEE Transactions on Computational Intelligence and AI in Games 2(2),
111–119 (June 2010). https://doi.org/10.1109/TCIAIG.2010.2049020

8. Doran, J., Parberry, I.: A prototype quest generator based on a structural analysis
of quests from four mmorpgs. In: Proceedings of the 2Nd International Workshop
on Procedural Content Generation in Games. pp. 1:1–1:8. PCGames ’11, ACM,
New York, NY, USA (2011). https://doi.org/10.1145/2000919.2000920

9. Dormans, J.: Adventures in level design: Generating missions and spaces for action
adventure games. In: Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. pp. 1:1–1:8. PCGames ’10, ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1814256.1814257

10. Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s
new solitaire game ’life’. Scientific American 223, 120–123 (oct 1970)



11. Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content gen-
eration for games: A survey. ACM Trans. Multimedia Comput. Commun. Appl.
9(1), 1:1–1:22 (Feb 2013). https://doi.org/10.1145/2422956.2422957

12. Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular automata for real-time gen-
eration of infinite cave levels. In: Proceedings of the 2010 Workshop on Procedural
Content Generation in Games. pp. 10:1–10:4. PCGames ’10, ACM, New York, NY,
USA (2010). https://doi.org/10.1145/1814256.1814266

13. Van der Linden, R., Lopes, R., Bidarra, R.: Procedural generation of dungeons.
IEEE Transactions on Computational Intelligence and AI in Games 6(1), 78–89
(March 2014). https://doi.org/10.1109/TCIAIG.2013.2290371

14. Van der Linden, R., Lopes, R., Bidarra, R.: Designing procedurally generated lev-
els. In: Ninth Artificial Intelligence and Interactive Digital Entertainment Confer-
ence (2013)

15. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedu-
ral modeling of buildings. ACM Trans. Graph. 25(3), 614–623 (Jul 2006).
https://doi.org/10.1145/1141911.1141931

16. Nystrom, B.: Rooms and mazes: A procedural dungeon generator. Online (dec
2014), https://journal.stuffwithstuff.com/2014/12/21/rooms-and-mazes/

17. Ruela, A.S., Valdivia Delgado, K.: Scale-free evolutionary level generation. In: 2018
IEEE Conference on Computational Intelligence and Games (CIG). pp. 1–8 (Aug
2018). https://doi.org/10.1109/CIG.2018.8490366

18. Russell, S., Norvig, P.: Artificial Intelligence, A Modern Approach. Prentice Hall,
third edn. (2010)

19. Shaker, N., Liapis, A., Togelius, J., Lopes, R., Bidarra, R.: Constructive generation
methods for dungeons and levels. In: Shaker, N., Togelius, J., Nelson, M.J. (eds.)
Procedural Content Generation in Games: A Textbook and an Overview of Current
Research, pp. 31–55. Springer (2016)

20. Shaker, N., Togelius, J., Nelson, M.J.: Procedural Content Generation in Games:
A Textbook and an Overview of Current Research. Springer (2016)

21. Sheffield, E.C., Shah, M.D.: Dungeon digger: Apprenticeship learning for proce-
dural dungeon building agents. In: Proceedings of the 2018 Annual Symposium
on Computer-Human Interaction in Play Companion Extended Abstracts. pp.
603–610. CHI PLAY ’18 Extended Abstracts, ACM, New York, NY, USA (2018).
https://doi.org/10.1145/3270316.3271539

22. Smelik, R., Tutenel, T., de Kraker, K., Bidarra, R.: A declarative approach to
procedural modeling of virtual worlds. Computers & Graphics 35(2), 352 – 363
(2011). https://doi.org/http://dx.doi.org/10.1016/j.cag.2010.11.011, virtual Real-
ity in Brazil Visual Computing in Biology and Medicine Semantic 3D media and
content Cultural Heritage

23. Tearse, B., Mawhorter, P., Mateas, M., Wardrip-Fruin, N.: Skald: Minstrel recon-
structed. IEEE Transactions on Computational Intelligence and AI in Games 6(2),
156–165 (June 2014). https://doi.org/10.1109/TCIAIG.2013.2292313

24. Temucin, M.B., Oguz, K.: Procedural city generation using cellular automata. In:
Eurasiagraphics 2017 Conference Proceedings. pp. 27–41 (2018)

25. Toy, M., Wichman, G., Arnold, K., Lane, J.: Rogue. Digital Game (1980)

26. Valtchanov, V., Brown, J.A.: Evolving dungeon crawler levels with relative place-
ment. In: Proceedings of the Fifth International C* Conference on Computer Sci-
ence and Software Engineering. pp. 27–35. C3S2E ’12, ACM, New York, NY, USA
(2012). https://doi.org/10.1145/2347583.2347587



27. Wheat, D., Masek, M., Lam, C.P., Hingston, P.: Dynamic difficulty adjustment
in 2d platformers through agent-based procedural level generation. In: 2015 IEEE
International Conference on Systems, Man, and Cybernetics. pp. 2778–2785 (Oct
2015). https://doi.org/10.1109/SMC.2015.485

28. Whelan, G., Kelly, G., McCabe, H.: Roll your own city. In: Proceedings of
the 3rd International Conference on Digital Interactive Media in Entertain-
ment and Arts. pp. 534–535. DIMEA ’08, ACM, New York, NY, USA (2008).
https://doi.org/10.1145/1413634.1413742




