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Introduction

I We look at two aspects of the Lagrangian approach

1. the sensitivity of the optimal value of the objective function to

changes in the paremetrs of the problem

2. the second order conditions that distinguish maxima from

minima
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The Meaning of the Multiplier

One Equality Constraint

maximize f (x , y)

subject to h(x , y) = a

I a is a parameter. For any a, write (x∗(a), y∗(a)) for the
solution to the problem and write µ∗(a) for the multiplier. Let

f (x∗(a), y∗(a)) be the optimal value of the objective function.

I Under reasonable conditions, µ∗(a) measures the rate of

change of the optimal value of f with respect to the parameter

a, the (in�nitesimal) e�ect of a unit increase in a on

f (x∗(a), y∗(a)).

Izmir University of Economics Econ 533: Quantitative Methods and Econometrics



Introduction Multiplier Envelope Theorems Second Order Conditions

Theorem

Let f and h be C 1 functions of two variables. For any �xed value of

the parameter a, let (x∗(a), y∗(a)) be the solution of problem with

corresponding multiplier µ∗(a). Suppose that (x∗, y∗, and µ∗) are
C 1 functions and that NDCQ holds at (x∗(a), y∗(a), µ∗(a)). Then,

µ∗(a) =
d

da
f (x∗(a), y∗(a)).
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Several Equality Constraints

Theorem

Let f , h1, . . . , hm be C 1 functions on Rn. Let a = (a1, . . . , am) be
an m-tuple of exogenous parameters, and consider the problem

P(a) of maximizing f (x1, . . . , xn) subject to the constraints

h1(x1, . . . , xn) = a1, . . . , hm(x1, . . . , xn) = am.

Let x∗
1
(a), . . . , x∗n (a) denote the solution of the problem (Pa), with

corresponding Lagrange multipliers µ∗
1
(a), . . . , µ∗m(a). Suppose

futher that the x∗i 's and µ
∗
j 's are di�erentiable functions of

(a1, . . . , am) and that NDCQ holds. Then for each j = 1, . . . ,m,

µ∗j (a1, . . . , am) =
∂

∂aj
f (x∗1 (a1, . . . , am), . . . , x

∗
n (a1, . . . , am)).
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Inequality Constraints

Theorem

Let a∗ = (a∗
1
, . . . , a∗k) be k-tuple. Consider the problem (Qa∗) of

maximizing f (x1, . . . , xn) subject to the k inequality constraints

g1(x1, . . . , xn) ≤ a∗1, . . . , gk(x1, . . . , xn) ≤ a∗k .

Let x∗
1
(a∗), . . . , x∗n (a

∗) denote the solution of the problem (Qa∗),
with corresponding Lagrange multipliers λ∗

1
(a∗), . . . , λ∗k(a

∗).
Suppose futher that as a varies near a∗, x∗

1
, . . . , x∗n and λ∗

1
, . . . , λ∗k

are di�erentiable functions of (a1, . . . , ak) and that the NDCQ

holds at a∗. Then, for each j = 1, . . . , k,

λ∗j (a
∗
1, . . . , a

∗
k) =

∂

∂aj
f (x∗1 (a

∗
1, . . . , a

∗
k), . . . , x

∗
n (a

∗
1, . . . , a

∗
k)).
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Interpreting the Multiplier

I The multiplier measures the sensitivity of the optimal value of

the objective function to the changes in a, the constraint

constant (the right hand side of the constraint).

I In economic applications, a denotes the available stock of

some resource, and the objective function denotes utility or

pro�t. Then µ(a)da measures the approximate change in

utility or pro�t that can be obtained from da units more (or

−da, when da < 0). If f ∗(a) is the maximum pro�t when the

resource input is a, choosing da = 1 gives the approximation

f ∗(a + 1)− f ∗(a) ≈ µ(a). This means that µ indicates

approximately by how much pro�ts increase if one more unit of

the resource is made avalable.
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Envelope Theorems

Theorems which describe how the optimal value of the objective function

in a parameterized optimization problem changes as one of the

parameters changes.

Unconstrained Problems

Theorem

Let f (x; a) be a C 1 function of x ∈ Rn and the scalar a. For each choice

of the parameter a, consider the unconstrained maximization problem

maximize f (x; a) with respect to x

Let x∗(a) be a solution of this problem. Suppose that x∗(a) is a C 1

function of a. Then,

d

da
f (x∗(a); a) =

∂

∂a
f (x∗(a); a)
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I It is a very useful result because partial derivative of the

right-hand side is easier to deal with than the total derivative

on the left-hand side.

I When a changes, then f ∗ changes for two reasons:

1. A change in a changes f (x , a) directly

2. A change in a changes x∗(a), and so f (x∗(a), a) changes

indirectly.

I The result in the previous theorem shows that the total e�ect

on the optimal value of the objective function of a small

change in a is found by computing the partial derivative of

f (x , a) with respect to a, and evaluating it at x∗(a), ignoring
the indirect e�ect of the dependence of x∗ on a altogether.

The reason is that any small change in x has a negligible e�ect

on the value of f (x∗, a).

Izmir University of Economics Econ 533: Quantitative Methods and Econometrics



Introduction Multiplier Envelope Theorems Second Order Conditions

Constrained Problems

Theorem

Let f , h1, . . . , hk : Rn x R1 → R1 be C 1 functions. Let

x∗(a) = x∗
1
(a), . . . , x∗n (a) denote the solution of the problem of

maximizing x 7→ f (x; a) on the constraint set

h1(x; a) = 0; . . . , hk(x; a) = 0,

for any �xed choice of the parameter a. Suppose that x(a) and the

Lagrange multipliers µ1(a), . . . , µk(a) are C 1 functions of a and

that NDCQ holds. Then,

d

da
f (x∗(a); a) =

∂

∂a
L(x∗(a);µ(a); a),

where L is the natural Lagrangian for this problem.
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Second Order Conditions

I Second order conditions help us choose a maximizer from the

set of candidates which satisfy the �rst order conditions.

I The SOC for maximizing an unconstrained function

f (x1, ..., xn) is that the Hessian of f at the maximizer x∗

D2f(x∗) =


∂2f
∂x2

1

(x∗) . . . ∂f 2

∂xnx1
(x∗)

...
. . .

...
∂f 2

∂x1xn
(x∗) . . . ∂f 2

∂x2n
(x∗)


be negative de�nite.

I At a maximum f (x∗), Df (x∗) must be zero and D2f (x∗) must

be negative semide�nite (necessary conditions).

I To guarantee that a point x∗ is a local maximizer, we need

Df (x∗) =0 and D2f (x∗) negative (su�cient conditions).
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I Remember the condition on bordered matrices for verifying

SOC. Border the nxn Hessian D2L(x∗, µx) by the kxn

constraint matrix Dh(x∗):

I

H ≡
(

0 Dh(x∗)

Dh(x∗)T D2L(x∗, µ∗)

)
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D2L =



0 . . . 0 ∂h1
∂x1

. . . ∂h1
∂xn

...
. . .

...
...

. . .
...

0 . . . 0 ∂hk
∂x1

. . . ∂hk
∂xn

∂h1
∂x1

. . . ∂hk
∂x1

∂2L
∂x2

1

. . . ∂2L
∂xnx1

...
. . .

...
...

. . .
...

∂h1
∂xn

. . . ∂hk
∂xn

∂2L
∂x1xn

. . . ∂2L
∂x2n


If det H has the same sign as (−1)n and if these last (n − k)
leading principal minors of matrix alternate in sign with the sign of

det H, H is negative de�nite.
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Theorem

Let f , h1, . . . , hk be C 2 functions on Rn. Consider the problem of

maximizing f on the constraint set

Ch ≡ {x : h1(x) = c1, . . . , hk(x) = ck}.

Form the Lagrangian, and suppose that

1. x∗ lies in the constraint set Ch,

2. there exist µ∗
1
, . . . , µ∗k such that

∂L

∂x1
= 0, . . . ,

∂L

∂xn
= 0,

∂L

∂µ1
= 0, . . . ,

∂L

∂µk
= 0

at (x∗
1
, . . . , x∗n , µ

∗
1
, . . . , µ∗k).

3. the Hesssian of L with respect to x at (x∗, µ∗), D2L(x∗, µ∗) is
negative de�nite. Then, x∗ is a strict local constrained max
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Simplest max. problem: two variables and one equality constraint

Theorem

Let f and h be C 2 functions on R2. Consider the problem of

maximizing f on the constraint set Ch = (x , y) : h(x , y) = c. Form

the Lagrangian

L(x , y , µ) = f (x , y)− µ(h(x , y)− c).

Suppose that (x∗, y∗, µ∗) satis�es:

∂L

∂x
= 0,

∂L

∂y
= 0,

∂L

∂µ
= 0

at (x∗, y∗, µ∗), and

Izmir University of Economics Econ 533: Quantitative Methods and Econometrics



Introduction Multiplier Envelope Theorems Second Order Conditions

det

 0 ∂h
∂x

∂h
∂y

∂h
∂x

∂2L
∂x2

∂2L
∂x∂y

∂h
∂y

∂2L
∂y∂x

∂2L
∂y2


is positive at (x∗, y∗, µ∗).
Then, (x∗, y∗) is a local max of f on Ch.
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