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ABSTRACT

In the medical domain, experts usually look at specific anatomical
structures to identify the cause of a pathology, and therefore they can
largely benefit from automated tools that retrieve relevant slice(s)
from a patient’s image volume in diagnosis. Accordingly, this pa-
per introduces a novel search and retrieval work for finding relevant
slices in brain MR (magnetic resonance) volumes. As intensity is
non-standard in MR we explore performance of two complementary
intensity invariant features, local binary patterns and Kanade-Lucas-
Tomasi feature points, their extended versions with spatial context,
and a simple edge descriptor with spatial context. Experiments on
real and simulated data showed that the local binary patterns with
spatial context is fast, highly accurate, and robust to geometric de-
formations and intensity variations.

Index Terms— search and retrieval, brain MR, local binary pat-
terns, Kanade-Lucas-Tomasi feature points, spatial context

1. INTRODUCTION

Progress in imaging technology has multiplied the number of digital
images in the medical domain. Thus, automated search and retrieval
of medical images has evolved into a popular and essential research
topic.

In diagnosing diseases with high prevalence and unknown cause
or progress, medical experts can largely benefit from patient-to-
patient search methods that compare multiple patient data and re-
trieve relevant cases. Moreover, to identify the cause of a pathology
medical experts generally focus on a region-of-interest (single slice)
or a volume-of-interest (several contiguous slices). Accordingly,
retrieving the relevant slice given a query, which is a specific case of
patient-to-patient search, can be of further help to the expert in diag-
nosis of anatomical structure specific diseases, such as hypocampus
or basal ganglia disorders of the brain.

To the best of our knowledge, Bucci et al. [1] introduced the
only work focusing on retrieval of relevant slices. Their method
used Karhunen-Loéve transform and performed retrieval of the rele-
vant slice in the eigenimage domain, but required a computationally
expensive registration and intensity normalization step beforehand.

In this study we propose four retrieval methods based on two
intensity invariant features with/without spatial context, as well as
a simple edge descriptor with spatial context for comparison. The
proposed methods are not only fast, but also do not require computa-
tionally intensive registration, intensity normalization and bias field
correction of the data. The paper is organized as follows: Section 2
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introduces the challenges in processing brain MR images, Section 3
details the materials and methods, Section 4 presents the experimen-
tal results, and finally Section 5 concludes this paper.

2. CHALLENGES IN BRAIN MR IMAGES

The retrieval problem tackled in this paper is to find the target slice
from a brain MR volume that is the most similar to a query. The
challenges for this problem include:

• Intensity variations from one patient’s volume to another due
to possible differences in MR settings. This limits the use of
intensity information in comparing different MR volumes.

• Intensity variations within the same MR volume (bias field)
due to imperfect, inhomogeneous magnetic field. This re-
quires the use of computational bias field correction algo-
rithms.

• High similarity between relevant and irrelevant segments in
brain MR volumes, such as brain tissue vs. non-brain struc-
tures in the same slice and relevant slice vs. neighboring
slices in the same volume, makes their search and retrieval
more challenging.

• Inter and intra-patient misalignment of the images, because of
which anatomical structures are observed at different spatial
positions, orientations and scales in the images. Although
registration could solve this problem, it is computationally
very expensive.

3. MATERIALS AND METHODS

3.1. Image Data

The database is composed of 15 T1-weighted brain MR volumes
with 50 axial slices acquired using a 1.5T Philips Intera whole body
scanner with spin echo weighted sequence (TR/TE: 25,6/12 ms,
FLIP: 45), 250mm FOV, 3mm slice thickness, no slice gap and
256x256 matrix.

As changes in cerebral ventricles and the surrounding structures
are often associated with central nervous system disorders, from
each MR volume we manually selected four landmark slices cor-
responding to the ventricles (Figure 1).

3.2. Pre-Processing

The pre-processing step consists of brain tissue extraction [2] and
mid-sagittal plane detection [3], where the former discards back-
ground and non-brain structures while the latter indicates orienta-
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Fig. 1. Landmark slices of two MR volumes displayed in each col-
umn with the corresponding slice numbers.

(a) Original (b) Brain extracted

(c) MSP detected (d) Grid overlayed (e) Grid rotated

Fig. 2. Example of brain tissue extraction, mid-sagittal plane (MSP)
detection and rotation of the grid relative to MSP.

tion to compensate for rotation in spatial description of the features,
which will be explained afterwards (Figure 2).

3.3. Feature Extraction

3.3.1. Local Binary Patterns

Local Binary Pattern (LBP) [4] is an intensity invariant texture
descriptor with low computational complexity. Recently, we have
shown LBP to be robust to some common MR artifacts [5].

The original LBP operator describes the texture in the image by
thresholding a neighborhood with the gray value of its center pixel
and representing the result as a binary code.

3.3.2. KLT Feature Points

LBP computes texture features in all local regions of the image.
However, one may argue that not all parts of an image contain valu-
able information. Consequently, we propose to find interesting re-
gions of an image using the Kanade-Lucas-Tomasi (KLT) feature
point tracker [6], [7].

Feature point selection in KLT is performed by searching the
whole image through a window, and selecting the regions that have

adequate intensity variation in vertical and horizontal directions, i.e.
corner points.

3.4. Feature Description

In this section we propose four methods based on either LBP or KLT
features, and a baseline method for comparison. These five methods
are organized depending on whether their features are spatially in-
dexed (Sp) or not (nSp).

3.4.1. Non-Spatial Feature Description

nSp-LBP As LBP features correspond to all local regions of an im-
age, we describe them by their statistical distribution. There-
fore, in nSp-LBP we use the histogram of the extracted LBP
image.

nSp-KLT The essence of nSp-KLT method lies in the idea that
salient feature points extracted from an image will be suc-
cessfully matched on another if the two images are similar.
Hence, this method extracts feature points from the query and
attempts in matching them on the target (Figure 3). The num-
ber of matched feature points are then used as attributes in
retrieval.

Fig. 3. Feature point matching. Among 50 feature points (in white)
extracted from the query (left), 10 are matched on the target.

3.4.2. Spatial Feature Description

As anatomical structures in the brain are spatially related to ea-
chother, we argue that incorporating this information in the features
will enhance their descriptive ability. Therefore, spatial description
of features in the following methods is achieved using a grid with
4 annular and 12 angular partitions. Moreover, the grid is fitted on
the largest brain area observed in an MR volume providing a single
reference for all the corresponding slices.

Sp-LBP This method exploits spatial indexing [8] of the LBP image
histogram, where the entries of each bin are spatially indexed
over the grid.

Sp-KLT This method skips the matching step in nSp-KLT and com-
pares spatial distributions of feature points extracted from the
query and the target simultaneously over the grid (Fig. 4).

Sp-Sobel As baseline method, we use a histogram constructed from
the spatial distribution of Sobel edge points over the grid.

3.5. Retrieval

Fig. 5 illustrates the retrieval scheme used for all five methods. The
measure of similarity is defined in two ways:

1.

D1 (pq, pt) = 1 −
√∑

∀i

(pq(i) − pt(i))
2
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Fig. 4. Spatial distribution of 50 feature points (in white) extracted
from a query (left) and a target slice.

where pq and pt are the normalized histograms (features) of
query and target, respectively. This measure is used with nSp-
LBP, Sp-LBP, Sp-KLT, and Sp-Sobel methods.

2.

D2 =
number of matched feature points

number of feature points

which is used with nSp-KLT method.

Both measures provide a similarity score in the range of [0-1], with
scores closer to 1 indicating high-level of similarity between slices.
Consequently, for a retrieval task the target slice with the highest
score is assigned as the most similar one to the query and retrieved
at rank=1.

Fig. 5. Illustration of the retrieval scheme.

3.6. Performance Evaluation

We measure the error of a retrieval task as the sum of actual distances
of returns ranked higher than the relevant slice:

error =

N−1∑
i=1

(Si − SN ) × d

where N is the rank of the relevant slice, Si the slice number at
rank=i, and d the slice thickness. As our database consists of 15
MR volumes with 4 landmark slices per volume, there are 15 × 4
query landmarks. Excluding the retrieval tasks where query and tar-
get originate from the same volume, there are 15 × 4 × 14 = 840
unique retrieval tasks in total. Accordingly, performance of retrieval
in the following results is measured as the average error of all unique
retrieval tasks.

4. EXPERIMENTAL RESULTS

4.1. Performance of Retrieval

Comprehensive tests with different parameter settings for the meth-
ods have been performed, and Table 1 presents the best retrieval per-
formances achieved by all five methods. We observe that addition
of spatial context largely improves the accuracy of the LBP-based
method (Sp-LBP vs. nSp-LBP), whereas with the KLT features this
is not the case due to the feature point matching step ignored in Sp-
KLT. Sp-LBP is the best method, followed by nSp-KLT and the base-
line method (Sp-Sobel). Moreover, we observe that the errors for the
outermost landmarks (L1 and L4) are greater, probably because sim-
ilarity in brain tissue between these landmarks and their neighboring
slices is higher. This observation unveils the issue of semantic gap
between our high-level interpretation of the ground truth (selection
of the landmarks) and the low-level pixel data we process.

Table 1. Retrieval error of the methods in mm.
landmark

method L1 L2 L3 L4 all

nSp-LBP 157,4 189,1 179,7 228,3 188,6
Sp-LBP 27,9 12,0 19,5 73,0 33,0
nSp-KLT 68,7 14,7 29,7 78,6 47,9
Sp-KLT 124,8 54,5 54,2 94,1 81,9
Sp-Sobel 89,2 18,5 32,2 75,4 53,8

Figure 6 displays an examplary retrieval performed using the
Sp-LBP method. The relevant slices for L1, L2, and L3 are retrieved
at the top rank, while the one for L4 is retrieved at rank 3, which is
consistent with the above observation.

Additionally, we tested retrieval performance of the methods rel-
ative to intensity variation (bias field), and geometric deformations
(rotation and scaling).

Bias Field: The database is degraded by three simulated bias
fields from the BrainWeb MR Simulator [9]. We observed that ad-
dition of bias field, even at 40% intensity variations, had negligible
effect on the accuracy of the methods.

Rotation: The database is rotated in the axial plane by ±15 de-
grees and retrieval is repeated using the original images as query and
rotated versions as target. Results showed that Sp-LBP and nSp-KLT
are robust to rotation, while performance of other methods consider-
ably decreased.

Scaling: The database is linearly scaled in the axial plane by a
factor of {0.9, 0.8, 0.7, 0.6, 0.5}. We observed that Sp-LBP and nSp-
KLT are robust at scales above 0.7, while the other methods coped
worse with scaling.

4.2. Computational Complexity

Implementation of the algorithms are done in C/C++ and the average
processing time per slice (excluding the pre-processing step) on an
Intel Pentium processor (2.8 GHz) with 1G memory is measured as
103ms for Sp-KLT, 201ms for nSp-KLT, and around 50ms for the
other methods.

5. CONCLUSIONS

This paper presented a novel and fast search and retrieval work for
brain MR images where the task is to search for a key-slice from
an image volume. As intensity is non-standard in MR, we tested

999



Fig. 6. Example of a retrieval performed by Sp-LBP. Each row refers to a retrieval task, where the query and the corresponding top 5 returns
are displayed. The return with the checkmark refers to the relevant slice searched for.

two complementary intensity invariant features, local binary pat-
terns and Kanade-Lucas-Tomasi feature points, and compared them
with a baseline method. Experiments on real and simulated data
showed that incorporating spatial information in the local binary pat-
terns substantially improved accuracy, whereas avoiding matching
of Kanade-Lucas-Tomasi feature points considerably degraded per-
formance. Local binary patterns with spatial context consistently
surpassed its rivals in retrieval accuracy. Furthermore we observed
that nSp-KLT, the second best method, was computationally expen-
sive and does not permit database indexing due to the feature point
matching step. Accordingly, we recommend the use of Sp-LBP for
search and retrieval of a key-slice from an MR volume, because it is
accurate, fast, robust to bias field and geometric deformations, and
does not require registration, intensity normalization or bias field
correction.
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