
Geographic Web Usage Estimation By Monitoring DNS
Caches

Hüseyin Akcan
CIS Department

Polytechnic University
Brooklyn, NY 11201

hakcan01@cis.poly.edu

Torsten Suel
CIS Department

Polytechnic University
Brooklyn, NY 11201

suel@poly.edu

Hervé Brönnimann
CIS Department

Polytechnic University
Brooklyn, NY 11201

hbr@poly.edu

ABSTRACT

DNS is one of the most actively used distributed databases
on earth, accessed by millions of people every day to trans-
parently convert host names into IP addresses and vice versa.
In order to improve their performance, DNS servers also
keep temporary records of all requested domain names in
their cache. While most of the DNS servers are configured
to be used by their local users only, there still exist many
DNS servers that respond to public queries. Querying these
DNS servers reveals the recently visited domains. Exploit-
ing the geographically distributed nature of DNS, one can
gather usage statistics ranging from a single DNS server to
global scale. In particular, this enables collecting statistics
about geographic differences in web browsing behavior be-
tween different regions of a country or the world. In this
paper, we present methods to identify these public DNS
servers, discuss how to effectively crawl them, and describe
our algorithm to extract usage estimations from the crawl
data. We also evaluate our estimation algorithm using ex-
tensive simulations, and finally use our algorithms to crawl
150 U.S. universities for various domains, and explore the
effects of location and time on the access rate of these do-
mains.

Categories and Subject Descriptors: H.2.8 Database
Management: Database Applications - Data mining

General Terms: Measurement

Keywords: DNS, web site usage estimation, web access
monitoring

1. INTRODUCTION
The web is one of the biggest sources of freely available

information in the world. Although free, the information is
mostly scattered, and requires specialized algorithms and of-
ten expensive infrastructure to be useful to us. Even though
the majority of the work today focus on harnessing web con-
tent, there is also the other side of the coin, which is how
this data is accessed by the users. The web usage statistics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LocWeb 2008, April 22, 2008, Beijing, China.
LocWeb2008 held at WWW2008, April 22, 2008, Beijing, China.
ACM 9781605581606/08/04 . . . $5.00.

contain valuable information about the location and the de-
mographics of the users. Except the aggregated data from a
handful of companies, web usage statistics are only available
locally to the website administrators. Alexa [1] was one of
the first companies to provide statistics gathered from users
via a toolbar. The toolbar is installed as a plugin to the ex-
isting web browsers of participating users, and reports every
visit of the user to Alexa. The toolbar approach has impor-
tant drawbacks; e.g., privacy issues limit the scalability of
the approach in general, while on the contrary the popularity
of the toolbar in some countries or businesses affects the ran-
domness of the sample and introduces bias towards certain
topics or geographical regions. One good example for this
is the well known bias of Alexa results towards sites visited
by people in the Search Engine Optimization (SEO) indus-
try because SEO people are more likely to use the Alexa
toolbar1. Getting the access statistics directly from the ISP
logs is another approach for estimation, used by Compete
[2], Hitwise [4], and Quantcast [5]. Even though the esti-
mation in this case is more accurate, special business agree-
ments are required to get private user data from ISPs, which
makes it hard to scale (e.g., outside of U.S.). The limited
size of the sample affects the accuracy of the estimates for
both of these approaches, and only highly popular websites
are accurately represented.

Fortunately in addition to the methods mentioned above,
the web in itself contains traces of the user access data. In
this paper, we focus on the problem of estimating the access
rate of a website over time, but we use methods that are
quite different than the traditionally used ones. The crux
of our approach is to monitor the DNS caches in order to
get a statistically reliable estimation about the access rate
of individual domains. The estimations we get range from
micro scale (single DNS cache) to global scale (country or
larger), and cover a larger user base and a larger geographic
area quite naturally, compared to the existing methods. For
example, in a recent crawl in the Swiss IP domain, we iden-
tified 30, 000 responsive DNS caches.

Before going into the technical details, we would like to
elaborate on the possible applications of our method. The
main benefit of our approach is to give researchers a scalable
way to gather independent data about the way users access
the web without using any expensive infrastructure. Our

1http://norvig.com/logs-alexa.html (logs from year 2006)

method is abstract enough to support a wide range of ap-
plications. One such application is to observe the browsing
behavior of users in a certain location. Thus, by monitoring
the relative popularity of particular web sites in a particular
area, we could make conclusions about the demographics of
the user population in that area, for example by estimat-
ing the frequency of visits say to popular Chinese or Turk-
ish web sites. The gathered data is useful for research, as
well as other applications such as advertising. The ability
of our method to scale from a single DNS server to wider
geographical regions makes the applications even more in-
teresting. Apart from the location, one other dimension of
the observations is the time. By extending the duration of
the observations, we can get information about how the lo-
cal browsing habits of users change with location, as well as
time. Example applications for this approach include mon-
itoring the access rate of the candidates’ websites before
election times to aid future predictions about the outcome
of the elections, or to monitor competing websites to observe
how the changes in one of them are related to the user access
rate of the rest. Depending on the application our method
can be used by itself, or as a supplementary to the existing
methods, in order to increase the variety of the sources that
the data is collected from, and improve the accuracy of the
estimations.

In Section 2 we present the previous methods on web us-
age estimation and large scale DNS scans. In Section 3
we describe our methods. Section 3.2 presents methods to
identify caches, and Section 3.3 describes our algorithm to
crawl the caches. We discuss the estimation methods in Sec-
tion 3.4, and give experimental results in Section 4. Finally,
we conclude the paper in Section 5.

2. RELATED WORK
The DNS standard is defined in [13][14][15][16]. Location

information in the DNS standard is defined in [7]. Kamin-
sky [11][12] reports nearly 2.5 million open access DNS caches
in the world, based on scans in 2006. Grangeia [10] discusses
possible attacks on DNS, including DNS cache snooping
with recursive and non-recursive DNS queries. DNS cache
snooping is also acknowledged as a low level security thread
by the security community2. Our method is also based on
non-recursively monitoring DNS servers for recent visits to
websites.

Rajab et al. [18] use DNS cache probing among other
methods to monitor some 800, 000 DNS caches to detect
traces of bots trying to connect to their IRC servers. Fel-
ten et al. [9] discuss how an attacker can exploit DNS caching
to obtain web usage history from an unsuspecting client.
Their method assumes that the malicious code is embed-
ded as a java script within attackers’ website or sent to the
victim through email.

Alexa [1] and Comscore [3] use toolbars to obtain anony-
mous data from their users in order to rank websites. Hit-
wise [4], Compete [2], and Quantcast [5] also do website
ranking, but in addition to toolbars, these companies gather
data from large ISPs. Our approach scales quite naturally
in terms of geography, enabling us to aggregate usage statis-
tics from a large region, or zoom into any area and easily
get detailed usage statistics from that specific area. Also
other methods collect data on all domains but have limited

2http://www.securityspace.com/smysecure/catid.html?id=12217

resolution in terms of geographic distribution of users, while
our method allows us to get very detailed information about
the distribution of accesses for a few domains of particular
interest, by probing open DNS caches in an online manner.
We limit the number of domains we monitor in order to pre-
vent overuse of DNS caches, which is not an issue in previous
work.

Ding et al. [8] use hyperlink structure in web pages to
identify the geographical relevance of web pages, and adjust
search engines to display local results first, if applicable. For
example a national U.S. newspaper website is likely to have
incoming links from all over U.S., while a regional newspaper
only has links from its region. We can achieve the same
effect by observing user accesses to the websites using DNS
caches, such as national newspaper website will have visitors
from all over the country, while a regional newspaper only
attracts users from its region.

Poisson processes are widely used to model events if times
between consecutive events are independent random vari-
ables, and the number of events in one interval is indepen-
dent from the previous intervals. Once the events are mod-
eled as a Poisson process, the unknown Poisson variable λ

and its confidence interval is estimated within the defined
confidence value by observing the events. Cho et al. [6] dis-
cuss different methods to estimate website update intervals.
They assume that the websites are updated independently,
and that updates can occur at any time. In their application
the authors assume that the contents on the websites are
updated as a Poisson process, and designed an estimator to
guide their crawler, eventually improving the overall system
performance and bandwidth usage. Estimating the Poisson
variable λ is also discussed in [17] (page 311). The web
sites are accessed by individual users at individual times,
therefore it is logical to assume that the individual user vis-
its could be modeled as Poisson events. This is the main
reason we prefer to use Poisson estimators in our estima-
tion procedure. Among the various estimators for Poisson,
we adapt the estimator in [17] due to its tighter bounds in
interval estimation.

3. DNS CACHE MONITORING
In this section, we present methods to use DNS caches to

estimate usage profile for various domains. First, we present
the problem setup, and describe DNS terminology used in
this paper. Later, we describe our method to identify DNS
caches, and present our algorithm to efficiently crawl the
DNS caches for various domains. Finally, we present our
algorithm to estimate the average user access rate for each
domain, based on DNS cache observations.

3.1 Problem Setup
Given a set of open DNS caches that we have identified

and a domain, the problem is to estimate the user access
rate of the domain on these DNS caches by sending probing
messages to the DNS caches and interpretting the responses.
Each domain record is kept in the cache for a fixed time, de-
fined as TTL. Typical cache times for domains differ from a
minute to a day, and are obtained from each domain’s au-
thoritative server. Name resolution request to DNS caches
are sent using recursive or non-recursive probes. Once a do-
main name is requested as a recursive probe, assuming it is
not already in the cache, the DNS cache recursively finds
the correct record and adds it to its cache. The record lives

N
on

−
re

cu
rs

iv
e

pr
ob

es

TTL TTL TTL

Non cache time

Expire time + TTL TTL

In
iti

al
 r

eq
ue

st

A
dd

iti
on

al
 r

eq
ue

st
s

Time Axis

Figure 1: Different states of our non-recursive probes, and the user accesses on a typical DNS cache. The
black arrows marked ”Initial requests” and the dotted black arrows marked ”Additional requests” are typical
user interaction for the specified domain record. Green arrows represent our successful non-recursive probes,
that we find the domain record in the cache. Similarly red arrow represents an unsuccessful probe. Initial
requests are recursive user requests (from web browsers, etc.) that force the DNS cache to resolve and store
the record. Once stored the record stays for TTL seconds, unaffected by additional user requests. We start
crawling using non-recursive probes at an arbitrary time and adjust the frequency depending on the existence
of the record in the cache, and record the sum of durations the domain was not in the cache (non-cache time)
and the total number of successful non-recursive probes. We later use this data in our estimations.

in the cache up to TTL seconds, unaffected by further re-
quests within that time period. During the time period the
record is stored in the cache, all user requests to this record
are answered using the DNS cache without consulting the
authoritative or high level DNS servers. After TTL seconds,
the record is removed from the cache until the next access
time, when the whole process is repeated. Recursive probes
are the typical way the user applications (e.g., web browsers)
use for name resolution requests. As a result of the recursive
probe, the cache state of the DNS server changes because of
the newly added record. However in a non-recursive probe,
the DNS cache only returns the name of the authoritative
servers, but does not insert the record in its cache, thus
keeps its cache unchanged by the probe. In both recursive
and non-recursive probes, if the domain record is already in
the cache, the number of seconds remaining for that record
to expire is also returned, which we call expiration time.
Simply by using a non-recursive probe, we learn if the do-
main record is already in the cache, and by comparing the
expiration time with the TTL value we also learn the ex-
act time the record was inserted into the cache, all without
altering the cache of the DNS server. Altering the cache
state is not desirable for two reasons; it forces our requested
records to be included in the DNS cache, and because of
this we cannot easily detect if the record was already in the
cache or was added because of our interaction.

3.2 Identifying Caches
We categorize DNS servers that we identify on the web

into two: (1) authoritative servers, which do not allow caching
(most of the time) but answer to DNS queries related to their
domains; (2) caches, which recursively resolve DNS queries
for their users and cache the records for a certain period
of time. In this paper, DNS caches are our main area of
interest.

The first step of our method is to identify the DNS caches
we would like to crawl. One easy and effective way is to
scan an IP range for DNS caches [11] (e.g., IP range of U.S.
universities, IP range of Switzerland, etc.). We do the scan-
ning by sending valid DNS requests to each IP address, and

interpreting the response. In order to separate caches from
authoritative servers we set the recursive bit and ask for a
specific domain (e.g. poly.edu) in our DNS request. As a
result, we identify the DNS caches that actually resolve and
cache the specific domain, apart from authoritative servers.
We want to highlight here that recursive scanning is done
only once in order to identify the DNS caches in an IP
range. Once the caches are known, we only use non-recursive
queries during crawling, thus keeping the cache state of DNS
servers unchanged by our interaction.

In order to perform scanning, we developed our in-house
software using the thread safe version of the libresolv C li-
brary, on a Linux box. Each thread sequentially reads the
next available IP address from its pool, performs the scan
operation, and writes the state of that IP address to an
output file. In order to identify the DNS caches for our
U.S. university crawls, we first selected 150 universities in
IP ranges 128.x.x.x and 129.x.x.x, which leaves us with a
total number of 150 ∗ 216 = 9, 830, 400 IP addresses to scan.
Each DNS query has an average size of 200 bytes, and set-
ting the timeout for each query to one second we can scan
one IP address per second per thread. With 1, 200 threads,
we can scan the range in 2.27 hours, using 240 KB/s of the
network resources.

3.3 Crawling Caches
The next step after identifying the DNS caches is to de-

cide on a group of domain names to monitor. Crawls are
performed by periodically probing the DNS caches for the
existence of the domains we would like to monitor, as shown
in Figure 1. The period depends on the TTL value and exis-
tence of the domain in the cache. We use only non-recursive
probes to prevent altering the state of the DNS caches. We
say that we perform an exact crawl if each event in the
cache during some time interval t is guaranteed to be no-
ticed by our crawler. In a probabilistic crawl, however, the
probes can be random throughout the time interval, or the
caches can be monitored for several shorter periods of time
instead of the whole time interval. The number of probes
affects the quality of the estimation. However, the number

of probes to each DNS cache grows linearly with the num-
ber of domains we monitor, so due to resource limitations
or to prevent overuse of DNS caches (especially for domains
with small TTL values), probabilistic crawls might be more
desirable. In this paper, we prefer exact crawls. The crawl-
ing continues periodically based on the TTL value of each
domain as shown in Figure 1. In order to minimize the load
on the DNS servers, our goal is to gather all the data using
the minimum number of probes.

Assuming Qnext is the next scheduled query time, C is the
time of the last query, TTL is the maximum time the record
will remain in the cache before evicted, and R is the time
in seconds the record will remain in the cache (expiration
time) starting from C, we can give the following theorem:

Theorem 1. In order to do an exact crawl with a mini-
mum number of queries, we have to set the next query time
Qnext as follows:

Qnext =

8

>

>

>

<

>

>

>

:

C + TTL, if domain not in cache

at time C

C + R + TTL, if domain in cache

at time C

Proof. For the case in which the domain is not in cache
at time C, we are guaranteed to catch the record in the cache
if it was added (or catch the fact that it was not inserted) if
we query again at time C +TTL. Therefore, the next query
time becomes:

Qnext = C + TTL.

For the case when the domain is in the cache at time C,
the record will stay in the cache for R seconds, and following
the previous reasoning about the next query time, we can
set the next query time as:

Qnext = C + R + TTL.

In case there are any delays expected in the network,
Qnext can be set ǫ seconds earlier than the previously calcu-
lated value to prevent incorrect cache misses, where ǫ can be
adjusted based on the delay in the network, but should be
smaller than the TTL value. We also assume that the TTL

values for domains are constants and do not change during
the course of our scanning. Otherwise, we have to periodi-
cally verify the TTL value for each domain and adjust the
query times accordingly.

Our crawler program is designed as a multi-threaded pro-
gram. A single process reads the DNS cache IP addresses
along with the domain names and their TTLs, and creates
{cache IP, domain, TTL} tuples for each cache and domain
name. Later, the process creates a priority queue and fills
it with the tuples created. The priority queue orders the
records based on next query time, and allows us to monitor
domains with various TTL values. Once the priority queue
is initialized with all the records, the process summons the
threads to do the actual crawling as described in Theorem
1. The crawl results are stored on disk to be processed by
our estimation algorithm, which we introduce in the next
section.

3.4 Estimation
Crawling DNS caches gives us two types of valuable infor-

mation: (1) the number of times a domain record is added
to the cache, and (2) the duration in seconds the domain
record is not in the cache. Combining the derived informa-
tion with the TTL value of the domain, we can estimate the
average access rate for a specific domain, on a specific DNS
cache.

We assume the total number of user requests per second
for a domain is a Poisson random variable χ with parameter
λ. We monitor the DNS cache for a certain period of time
T . T ′ is the total number of seconds the record for that
domain is not cached (non-cache time), and h is the number
of times that domain record is added to the cache. We
use the estimator in [17] to estimate the Poisson parameter
λ, and define our estimation x̄ as the average number of
estimated requests per second, calculated as:

x̄ =
h

T ′
.

The intuition behind this estimator is that the average time
a record stays outside cache after being evicted (average
non-cache time) gives us the average access rate of the do-
main. The time interval between when the domain record is
removed from the cache and the first user request for that
same domain depends on the average access rate of the do-
main by the users. This time interval is our only chance
to exactly measure the time between two consecutive user
requests for that domain, since we cannot observe further
requests once the domain record is cached. Thus the av-
erage non-cache time and the average user access rate are
correlated, and can be better estimated by using a larger
number of samples.

For a confidence value of 95%, and z2

u as a constant from
statistics for 95% confidence level, the confidence interval
for our estimation x̄ becomes:

(λ − x̄)2 =
z2

u

T ′
λ,

Rewriting the equation we get:

λ
2 − (2x̄ +

z2

u

T ′
) + x̄

2 = 0,

The roots of the equation (λ1 and λ2) give the confidence
interval for our estimation as:

λ1 < x̄ < λ2.

The accuracy of x̄ and the tightness of the confidence in-
terval change with the number of times the domain is ob-
served in the cache (h), and the total duration of the obser-
vation. For a limited observation time the caching duration
of the domain (TTL) also affects the observation accuracy
since larger TTL values cause fewer cache observations (h).

Although our model initially assumes that each user visit
to a website is a Poisson event, the joint behavior of users on
a DNS cache is also a Poisson event. This comes from the
fact that sum of Poisson events also follow Poisson distribu-
tion. Using this fact, we can generalize our estimation for
multiple users and multiple DNS caches. Using our meth-
ods, we estimate the average access rate of a domain. Since
we do not have a way to know exactly how many users are
using each DNS cache, we can only talk about relative ac-
cess rate of a domain. To overcome this limitation, we have

to normalize our results using popular domains as our base
since these domains are most likely accessed on every DNS
cache. Search engines are good examples for such popular
domains.

4. EXPERIMENTS
In this section, we present the experimental results of our

algorithms both on simulated and real world environments.
In Section 4.1 we describe the simulation environment used
to estimate usage statistics, and present various experimen-
tal results based on our simulator. Experimenting with the
simulator, we evaluate the effects of access rate, domain
cache time (TTL), and observation duration on the final
estimation accuracy. Later in Section 4.2 we use the expe-
rience from the simulator to crawl real world DNS caches
that cover 150 U.S. universities spread out over five regions
in the continental United States. We use this diverse sample
to explore the effects of location on web access profiles, and
identify some interesting trends.

4.1 Simulated Environment
Before working on real data, we first test our estimation

algorithm on a simulated environment. The simulator mim-
ics multiple user accesses to a single domain on a single DNS
cache. As described in Section 3.4, we assume requests for
a domain form a Poisson process with parameter λ, and
we estimate this Poisson parameter using average non-cache
time (T ′) and number of cache hits (h). Figure 2 (a) plots
the error between λ and our estimate x̄ for different DNS
cache TTL values. The experiment is done for a fixed sized
observation window of one day (86, 400 seconds), and as
seen from the figure, for smaller and larger values of λ the
estimation is not accurate at all, but accuracy varies in be-
tween depending on the TTL value. The main reason for
low accuracy for smaller λ values is simply that in one day
we cannot see enough samples to estimate, and this gets
worse for larger TTL values. Contrary, for λ values larger
than 0.1, the observed record almost always sits in the DNS
cache since the record is accessed on average every 10 sec-
onds or less, and once accessed it sits in the cache for TTL
seconds. For a good estimate, we have to see the record in
the cache enough times, but we also have to observe some
times where the record is not in the cache. From Figure 2 (a)
we can conclude that limited observation time (e.g. one day)
should be avoided especially for TTL values larger than one
hour (3, 600 seconds).

Once we examine the DNS cache for a fixed period of
time (e.g. one day), we get different numbers of samples
from domains with different TTL values. In order to more
accurately evaluate our estimation method, and see if we can
get accurate estimates even for larger TTL values, we design
a new experiment to monitor until each domain is seen 100
times in the cache, and present the results in Figure 2 (b).
As a consequence, the observation duration for each TTL
differs, while the number of times the domain is seen in the
cache is the same. As we see from the figure, the estimation
algorithm gives acceptably accurate results if we can observe
the domain enough times in the cache (increasing our sample
size), independent of the domain TTL value.

We conduct another experiment to see how many sam-
ples we need from each TTL value to get less than 10%
error on the access rate λ and our estimate x̄. In order to
increase the robustness of the experiment, we continuously
probe the cache until the error is below 10% for three con-

secutive probes that we observe the domain in the cache,
and report the number of probes conducted. Figure 2 (c)
shows that we can get less than 10% error on each TTL value
by getting at most 50 samples, which means observing the
domain 50 times in the cache.

All the experiments up to now suggest that we can get
good accuracy bounds by using our estimation method, and
the accuracy of the estimation changes with the domain
TTL value, user access rate for that domain, and our obser-
vation window size. For domains with larger TTL values or
less frequently accessed domains it is better to do the obser-
vation based on the number of times we see the domain in
cache, instead of a fixed time period.

4.2 RealWorld DNS Crawls
In this section, we present experiments done using real

DNS caches from 150 U.S. universities within IP range 128.x.x.x
and 129.x.x.x. The universities are used since it is more
likely to find open DNS caches in universities, and they are
easy to locate geographically. We use a freely available on-
line service3 to geocode the universities. We identified 4, 818
caches that responded to our initial scan. Although not all
of these caches are expected to be accessible at all times dur-
ing our crawls (some may have dynamic IP addresses and
may be personal computers or laptops), an average of 3, 000
caches remained responsive during our crawls. In theory,
DNS cache times can be quite large, say 24 hours or more,
but in practice we observed that most of the popular do-
mains use smaller cache times. The DNS cache times of the
domains that we monitored in this paper vary from 300 to
7, 200 seconds. During our crawls, we showed utmost care to
not overuse the DNS caches, and cause any inconvenience.
In order to do so, we limit the number of domains that we
monitor in each experiment, and avoid probing the same
DNS caches frequently.

Before going into the details of the real-world experiments,
we would like to highlight that we monitor the universities
remotely, meaning that we do not have any insight about
how many people are studying/working in each university,
whether the DNS caches are official name servers or work-
ing on a student’s laptop, and how many users each DNS
cache has. In our case, knowing the exact number of users
is not necessary, as we are more interested in comparing
the relative access frequencies of different domains, and dis-
covering usage trends rather than exact hit counts for each
domain. We clearly do not have any prior information about
the user profiles of these universities, and we can not know
the exact website access profiles of these users. Our method
gives accurate estimations based on the DNS caches that we
monitor, but this is only a subset of the web accesses for the
monitored domains, as we can only monitor a small subset
of the U.S. web users. Even in the universities that we mon-
itor, there may be other highly used DNS servers that we
do not have access to.

In order to compare popularities of domains between dif-
ferent universities, we introduce the notion of Search Engine
Units to normalize access frequencies relative to the access
rates of major search engines, since it can be argued that
search is universally popular across all institutions. We use
the collective access rate of three day crawls of google.com
and search.yahoo.com as our base access rate.

In order to explore the effects of location on web usage

3http://geotool.servehttp.com

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1e-05 1e-04 0.001 0.01 0.1

| l
am

bd
a

-
m

ea
n

| /
 la

m
bd

a

lambda

TTL=60
TTL=300

TTL=3,600
TTL=7,200

TTL=14,400
TTL=28,800

(a)

 0

 0.05

 0.1

 0.15

 0.2

 1e-04 0.001 0.01 0.1

| l
am

bd
a

-
m

ea
n

| /
 la

m
bd

a

lambda

TTL=60
TTL=300

TTL=3,600
TTL=7,200

TTL=14,400
TTL=28,800

(b)

 0

 10

 20

 30

 40

 50

 60

 1e-04 0.001 0.01 0.1 1

N
um

be
r

of
 s

uc
ce

ss
fu

l p
ro

be
s

lambda

TTL=60
TTL=300

TTL=3,600
TTL=7,200

TTL=14,400
TTL=28,800

(c)

Figure 2: (a) Relative error of estimating λ, for different cache TTL times for a limited observation period
of 86, 400 seconds (one day). The accuracy of the estimation varies with the TTL values of the domains, and
user access rate. (b) Relative error of estimating λ, when the observation is not time bounded but continues
until the domain is seen 100 times in cache for each TTL. (c) Number of successful probes required to get
less than 10% error in our estimation for each TTL value. A Successful probe means we observe the domain
record in the cache for that probe.

profiles we analyze the U.S. results in five regions (West,
Southwest, Midwest, Southeast, and Northeast). The aver-
age access rates of individual universities are aggregated to
find the total access rates of their regions. Using the regions
we can display the effects of locality based on these regions.
We crawled national and regional newspapers for a period of
one weekday to observe the effects of location on web access
profiles of different universities. Figure 3 plots the different
access profiles for four different newspapers. As we see from
the figure, the San Francisco Chronicle (sfgate.com) is more
popular in the West, and the Boston Globe (boston.com)
is mostly accessed in the Northeast. However, the Los An-
geles Times (latimes.com) and the New York Times (ny-
times.com) have a more general distribution. Figure 6 gives
a more detailed view of the access rates of each newspaper
for the same experiment. In this figure, we can observe the
individual access rates per university. The results are color
coded for easier presentation and colors of Red, Blue, Green
and Yellow represent the popularity from higher to lower
respectively. In Figure 6, we can see which specific areas
within regions contribute to the access rates of the newspa-
pers. For example in Figure 6 (b) we see that the popularity
of the Los Angeles Times in West mostly comes from the ar-
eas around Los Angeles. Similarly in Figure 6 (d) we observe
that the Boston Globe is not homogeneously accessed in the
entire Northeast region, but the newspaper is only highly
popular in a small area around Boston, and the popularity
in the rest of the Northeast region is on par with the pop-
ularity in other regions of U.S. We also detected periodic
accesses to all news sites that we monitored from a few uni-
versities. The exact same periodic access rate suggests that
there is a machine involved in the process, possibly a news
crawler. We omitted the crawlers that we detect from our
results. The results for the San Francisco Chronicle in Fig-
ure 3 are a little odd, especially in the West. When we check
these results, we observe that the San Francisco Chronicle
access rates in some universities in West are quite higher
than the combined search engine accesses, which boosts the
Search Engine Units.

In Figure 7, we compare the user access rates of three
popular online shopping sites: Amazon, eBay, and Barnes
& Noble. We color coded the results based on which site
is more popular than the rest in each particular university.
Red color represents places where Amazon is more popular

Figure 3: Newspaper access rates for US universi-
ties, normalized by the search engine access rates
for each university. Figure plots the results based
on five U.S. regions

than the rest, while similarly yellow color represents eBay,
and blue color represents Barnes & Noble. As we see in
Figure 7 (a), Amazon and eBay are the more popular ones
among the three, but it is hard to conclude whether there
exist any spatial correlation within these results. From this
figure, we can also detect some interesting outliers, such as
Barnes & Noble’s popularity in two universities in Texas.
Figure 7 (b) shows how we can get detailed statistics from
each single university.

These figures are mere observations than conclusions as
there are certain things that we can directly observe from
the figures but cannot elaborate on the exact reasons. For
example in Figure 6 (c), the popularity of San Francisco
Chronicle in the West is expected, but the popularity of the
same newspaper in certain locations in the Northeast region
is interesting. Same goes for the popularity of Barnes & No-
ble in Texas (see Figure 7). As we do not have any internal
data on the exact student profile of these universities, we
cannot conclude why this is the case.

In Figure 4, we show a comparison of popular online map-
ping services. We observe that the Google Maps website is
clearly more popular than the rest, followed by Yahoo Maps,
Microsoft Local Live, and Mapquest. In this case location
does not play much of a role on the ordering of these services.

We also monitored some domains for several days uninter-
rupted to observe the variations of web access rate of these

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

03/17 03/24 03/31 04/07 04/14 04/21 04/28 05/05

A
ve

ra
g
e
 a

cc
e
ss

 p
e
r

se
co

n
d

Date

Google
Yahoo

Microsoft

(a)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

02/03 02/17 03/03 03/17 03/31 04/14 04/28 05/12

Date

apple
store.apple

(b)

Figure 5: (a) Continues crawl of U.S. university DNS caches for various search engines, and (b) for apple.com
and store.apple.com domains, in 2007.

Figure 4: Online mapping service comparisons for
U.S. universities, normalized by the search engine
access rates for each university. The figure shows
the results based on five regions in the U.S.

domains over time. Figure 5 (a) plots the total access rate
of all U.S. universities for three popular search engines, and
Figure 5 (b) for different Apple domains. The results given
in this figure are not normalized by Search Engine Units,
and are smoothed for each week. In all days, the order
of the search engine accesses does not change, and Google
is the most popular in search, followed by Yahoo Search
and MSN Search (including Live Search). In Figure 5 (b)
we observe sharp peaks in Apple’s access rate. These days
correspond to Mac OSX security patch distributions, and
Apple TV shipment announcements, which is an interesting
observation to us.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented methods for estimating the

usage rate of websites by monitoring DNS caches. We de-
scribe separate methods to identify the caches, crawl the
caches for various domains, and finally estimate usage. We
test our algorithms on a simulated environment, as well as
on real world DNS caches from 150 U.S. universities. Our
experiments show that we can estimate the usage of various
domains, and we can observe various correlations of data
based on geographical location and observation time. In fu-
ture work, we would like to examine different estimators,
and extend our DNS cache pool in order to perform more
global scale crawls to make more detailed observations. We

also would like to do more detailed observations on the out-
lier cases that we detected in our experiments. We are also
interested in other geographical observations and possible
applications of this technique.

6. REFERENCES
[1] http://www.alexa.com.
[2] http://www.compete.com.
[3] http://www.comscore.com.
[4] http://www.hitwise.com.
[5] http://www.quantcast.com.
[6] J. Cho and H. G. Molina. Estimating frequency of

change. ACM Transactions on Internet Technology
(TOIT), 3:256–290, August 2003.

[7] C. Davis, P. Vixie, T. Goodwin, and I. Dickinson. [RFC
1876] A Means for Expressing Location Information in
the Domain Name System, January 1996.

[8] J. Ding, L. Gravano, and N. Shivakumar. Computing
geographical scopes of web resources. In Proceedings
of 26th International Conference on Very Large Data
Bases (VLDB’00), pages 545–556, Cairo, Egypt, 2000.

[9] E. W. Felten and M. A. Schneider. Timing attacks
on web privacy. In ACM Conference on Computer
and Communications Security (ICC’00), pages 25–32,
Athens, Greece, 2000.

[10] L. Grangeia. DNS cache snooping:
http://www.sysvalue.com/papers/dns-cache-snooping.

[11] D. Kaminsky. Black Ops Of TCP/IP 2005.5,
New Explorations: Large Graphs, Larger Threats.
http://www.doxpara.com/Black Ops Of TCPIP 2005.ppt.

[12] D. Kaminsky. Explorations in namespace: white-hat
hacking across the domain name system. Commun. of
the ACM, 49(6):62–69, 2006.

[13] P. Mockapetris. [RFC 882] Domain Names, Concept
and Facilities, November 1983.

[14] P. Mockapetris. [RFC 883] Domain Names, Implemen-
tation and Specification, November 1983.

[15] P. Mockapetris. [RFC 1034] Domain Names, Concept
and Facilities, November 1987.

[16] P. Mockapetris. [RFC 1035] Domain Names, Implemen-
tation and Specifications, November 1987.

[17] A. Papoulis and S. U. Pillai. Probability, Random Vari-
ables and Stochastic Processes. McGraw-Hill, 4th edi-
tion, International edition, 2002.

[18] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis.
A multifaceted approach to understanding the bot-
net phenomenon. In Internet Measurement Conference
(IMC’06), pages 41–52, Rio de Janeiro, Brazil, 2006.

(a) (b)

(c) (d)

Figure 6: Detailed view of the results in Figure 3. The colors of Red, Blue, Green and Yellow represent the
scale of access rates from higher to lower. The color scale is relative within each figure itself. (a) Access rate
of the New York Times, generally distributed over the U.S. map. (b) Access rate of the Los Angeles Times,
again generally distributed, with some concentration in the LA area. (c) Access rate of the San Francisco
Chronicle: except a couple of places in the Northeast, most of the concentration is around Bay Area. (d)
Access rate of the Boston Globe: lower access rates all over U.S. with high concentration around Boston
area.

(a) (b)

Figure 7: Comparison of online shopping sites. Red color represents universities where Amazon is more
popular than the rest. Similarly yellow color represents eBay, and blue color represents Barnes & Noble.
Using our method we can get an overview of the whole U.S. (a), or we can observe the results specific to one
university (b).

